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ABSTRACT

The numerical method developed by Chen and Patel (IIHR Report No. 285,
April 1985) for the solution of the partially-parabolic Reynolds-averaged
Navier-Stokes equations has been generalized to solve the fully-elliptic
equations. This method is applied to calculate the flow over the stern and in
the wake of several ship forms for which extensive data are available. The
report also provides an overview of the present status of experiments and
computational capabilities for such flows.
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NOMENCLATURE

grid-attraction amplitude function defined in equation (41)
convection coefficients in the linearized convective-transport
equation (45)

(1) modified grid-control functions defined by equation {(36)
(2) constants 1in analytical solution of the one-dimensional
equations (49) and (51)

convection coefficients in the linearized convective~transport
equation for ¢(=U,V,W,k,c)

finite-analytic coefficients for pressure and pressure-correc-
tion equations

constants in transport equations (16) for ¢(=U,V,W,k,e)
two-dimensional grid-control function defined by equation (40)
three-dimensional grid correction function defined by equation
(41)

geometric coefficients as defined in equation (27)
dimensionless crossflow velocity, normalized by Uy
grid-adjustment factor defined in equation (41)

block coefficient

]

Tinite analytic coefficients for transport‘équéfﬁbns
(nb = NE’ Nw, SE, Sw, EC, wc, NC’ SC)

finite-analytic coefficients for pressure and pressure-correc-
tion equations

1 2 < s < s o2
1/ 7 pUy, friction coefficient (=2U7)

2

=2p, pressure coefficient normalized by % PU,

iv

[ Y i S BRI RO S e




finite analytic coefficients for transport equations at cen-
tral, upstream and downstream nodes

turbulence-model constants

constant defined in (41)

partial mass source term defined in equation (60a)

source function in pressure equation (61)

mass source term in pressure-correction equation (65)
finite-analytic coefficients for pressure and pressure-correc-
tion equations

series summation term in equation (52)

grid-control functions in equations (19) and (20)

turbulence generation term in equation (9) and (26f)
g (1) geometric coefficient in equation (29)

(2) source function in linearized transport equations (50) and

1 (52)
4 94 metric tensor in general curvilinear coordinates
gij conjugate metric tensor in general curvilinear coordinates
h grid size in equation (46)
q hy metric coefficients or scale factors in orthogonal coordinates
"
J Jacobian
3 k (1) dimensionless turbulent kinetic-energy, normalized by Ug
J (2) grid size in equation (46)
L length scale (body length)
“ 1 grid size in equation (46)
N distance normal to the body cross-section
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0 unit vectors normal to the coordinate lines

p dimensionless pressure, normalized by pUi
p* guessed (imperfect) pressure field
p p—p*, pressure-correction
g dimensionless total velocity vector, normalized by Uo
q* projection of the velocity vector on the body surface
q magnitude of q
qE,qn,q; dimension]eséycomponent velocities along £,n,; directions,
respectively
R radius
r R/L, dimensionless radius
L position vector
s> max dimensionless radius of the body surface and outer boundaries
Re UOL/v, Reynolds number
Ry 1/Re + vt/°¢’ as in equation (10)
S4254 source functions for transport quantities ¢{= U,V,W,k,e)
t dimensionless time, normalized by L/Uo
U,V,W dimensionless velocity components, normalized by Uy
u*,v*,w* velocities obtained from guessed pressure field p*
E,V,ﬁ pseudovelocities in equation (57)
G,Q,Q modified pseudovelocities in equation (59)
Uy constant free-streram (reference) velocity
Ue wake centerline velocity normalized by Ug
R | U velocity vector
U, (rw/pus)]/z, normalized friction (wall shear) velocity
uu, w, etc. dimensionless Reynolds stresses, normalized by Ug
Us velocity at the edge of boundary layer
vi

3 oA SN e et




WY T W Tk e T T —r Lana &

T T e v T
o & P w

X,Y,Z Cartesian coordinates
Xs¥s23X,Y,2 dimensionless Cartesian coordinates
x] dimension ess orthogonal coordinates (i=1,2,3)
X,r,0 dimensionless cylindrical-polar coordinates
y+ ReUTy, dimensionless distance normal to the wall
y* dimensionless distance from the hull surface in the y-direction
Greek
a angle between L and gn
a; coefficients in transport equation (22) for ¢(=U,V,%,k,e) and
i=1,2,3
8 angle between q* and £-direction on the body surface
Y angle between zg and I
i S boundary-layer thickness
1 € rate of turbulent energy dissipation, normalized by Ug/L
{ K von Karman constant
Xm eigenvalues
v kinematic viscosity
¢ Vt turbulent eddy-viscosity, normalized by UOL
E,n,% transformed (general curvilinear) coordinates
Ei general curvilinear coordinates (i=1,2,3)
{ E*,n*,c* transformed coordinates in linearized convective transport
jh equations (45)
m = 3.141592653589793
“ %, turbulence model constants for ¢(=U,V,W,k,e)
¢ (1) transport quantities (U,V,W,k,e)
i (2) y or z in equation (42)
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Superscripts

d,e, etc.

n,n-1

downstream, east, etc., control surfaces

nth and (n-])th time step
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I.  INTRODUCTION

This report is concerned with the three-dimensional shear flow over the
stern and in the wake of a ship. A review of the general features of such
flows was provided by Patel (1982). On the basis of available experimental
evidence it was observed that these flows could not be adequately described by
boundary-layer theory or simple extensions of it, and recourse had to the so-
called partially-parabolic (or parabolized) Navier-Stokes equations. The need
for further experiments to provide the details required for the development
and verification of solution procedures was alsu identified. Over the past
few years, much effort has been devoted at many organizations to the develop-
ment of solution procedures appropriate for the compiex geometries of ship
hulls, and additional experiments have been conducted on a number of different
ship and ship-1ike models to establish a data base.

In the research at The University of Iowa, a method for the solution of
the partially-parabolic equations was first developed and applied to a variety
of trailing-edge and wake flows, including the flow over axisymmetric bodies
and ship-1ike three-dimensional bodies. This method was described in detail
by Chen and Patel (1985a) and its applications have been reported in several
publications [Chen and Patel (1984; 1985a,b), Patel and Chen (1986a)]. During
the course of this development it became clear that the numerical algorithms
and physical models incorporated into the method could be employed equally
well in the solution of the complete, fully-elliptic, Reynolds-averaged Nav-
jer-Stokes equations without dncurring a significant penalty in computing
times or storage. Although, as noted in Patel (1982), the partially-parabolic
approximations are quite appropriate for most ship stern flows, the greater
range of applicability of the fully-elliptic formulation was considered very
attractive., For this reason, the partially-parabolic method of Chen and Patel
(1985a) has been generalized to a fully-elliptic mode. The changes which are
required in the original formulation are described here. This more general
method is then applied to calculate the flow over several ship forms for which
experimental data are available.

In what follows, we shall first put the present work in perspective by
reviewing the different approaches which ar being adopted to develop calcula-
tion procedures for ship stern flows. The status of the experimental informa-




tion is then reviewed to identify suitable test cases for the assessment of
calculation methods. This is followed by a description of the fully-elliptic
method, and its evaluation by application to the selected test cases. Detail-
ed comparisons are made between the experiments and calculations with respect
to the hull pressure distributjon, the mean velocity field, and, when avail-
able, the turbulence parameters. It is shown that the numerical method is
capable of handling all the geometrical and physical features of the flow.
Some improvements are, however, necessary in the modelling of the turbulence,
particularly in the near-wall and near-wake regions.

II. SHIP STERN AND WAKE FLOW

II1.1  DEVELOPMENTS IN THEORY

An accurate prediction of the flow at the stern is of great practical
interest in the determination of ship resistance, in the design of propellers
and appendages, and in the determination of the ensuing wake. The failure of
conventional boundary-layer calculation methods, of the type which have been
used with considerable success on aerodynamic configurations, to predict the
thickening of the viscous flow over the stern was demonstrated quite dramati-
cally by the results presented at the SSPA-ITTC Workshop [Larsson (1981)].
Figure 1, adapted from that reference, shows the contours of the axial compo-
nent of velocity at a transverse section close to the stern of two double
models tested in wind tunnels. There are many reasons for the observed dis-
agreement among the calculations with different methods and experiments.
Among these are: failure of the boundary-layer approximations, inadequacies of
the empirical inputs to effect closure of the equations, and, of course, inac-
curacies in the numerical schemes.

As noted in the recent Report of the Resistance and Flow Committee of the
18th ITTC [referred to here as ITTC (1987)], methods for the calculation of
stern flows have evolved in two general directiors. One of these involves
generalization and extension of the thin boundary-layer methods, of both
integral and differential types, to include such factors as changes in coor-
dinate metrics normal to the surface, normal variation of pressure, and inter-
action hetween the viscous and inviscid flow regions. The development of
these so-called higher-order integral methods for thick boundary layers has



beon pursued by Nagamatsu (1985), Soejima (1985), and Toda et al. (1985),
among others, These methods dinvolve numerous approximations with respect to
the terms which are retained in the equations, velocity-profile assumptions,
friction formulas, and auxiliary closure equations. Similar attempts to
generalize differential thin boundary-layer methods have been made by Soejima
(1983) and Lee (1985) but they have not reached the level of development of
the simpler integral methods due to the difficulties of coupling such calcula-
tions with the external invicid flow to obtain matched and converged solu-
tions.

The alternative approach to the calculation of stern flows involves
numerical solutions of the complete Reynolds-averaged Navier-Stokes equations,
or the somewhat less general partially-parabolic equations, in domains which,
in principle, encompass the viscous as well as the inviscid flow. Initial
development of such methods was restricted to two-dimensional and axisymmetric

shapes, but applications to three-dimensional problems are now beginning to be
made. Patel and Chen (1986a) presented a review of these, and other methods
of the type discussed above, for the simpler case of axisymmetric flow over
the tail and in the wake of bodies of revolution. They concluded that the
g numerical complexities of the traditional iterative approach to viscous-invis-
cid interactions is fast approaching those of the global, large-domain methods
which involve fewer assumptions. However, comparative study of interactive
and noninteractive procedures for the solution of the partially-parabolic
viscous-flow equations made by Stern et al. (1986) suggests that both approa-
ches lead to satisfactory results with comparable computing effort.

. . o teamdnamh
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Although experience with global numerical methods in three-dimensional
flows, in general, and for ship hulls, in particular, is still quite limited,
different approaches are being followed to develop such methods. This is
evidenced by the recent work of Broberg and Larsson (1984), Chen and Patel
(1984, 1985a,b), Hoekstra and Raven (1985a,b), Huang and Zhou (1985), Ito and
Mori (1985), Janson and Larsson (1985), Kodama (1985,1987), Raven and Hoekstra
(1985), Tzabiras (1984, 1985), and Stern et al. (1586). These methods are at
varjous stages of development and differ quite substantially from one another
i in many important respects. The principal differences stem from: (a) coordi-
nates used and methods employed to construct them; (b) approximations intro-
duced in the Reynolds-averaged Navier-Stokes equations, leading to the so-
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called thin-layer equations, or the partially-parabolic equations; (c) the
\ ) turbulence model employed, ranging from algebraic eddy-viscosity to multi-
equation models, and the treatment of the boundary conditions; (d) formulas
used to discretize the differential equations and the numerical methods used
to solve them; (e) in the size of the solution domain and coupling with the
inviscid flow, if any; and (f) in the manner in which the solution is initi-
ated, e.g. using inviscid solution, starting with a boundary-layer solution,
marching in time from rest, etc. A detailed discussion of these differences
is well beyond the scope of this report. However, we shall address some of
them in subsequent sections as we describe the particular prccedures adopted
in the present development.

Most of the methods mentioned above have been developed and applied thus
far to the case of double models. Thus, the free surface is considered to be
flat and treated as a plane of symmetry. Extension of these methods to treat
the effects of the free surface have not yet received much attention largely
because the difficulties are even greater than those encountered within the

i framework of thin boundary-layer theory [see Stern (1985, 1986)]. Such exten-
sions may evolve along two different directions. In one, a viscous-flow
method may be combined with an inviscid-flow method in an interactive mode to

J take advantage of the well developed techniques of classical ship-wave theory.
! The alternative approach, which does not separate the viscous and wave ef-
| fects, would require the satisfaction of the proper boundary conditions at the

free surface which 1is itself determined as a part of the solution. This
latter approach has been pursued by, among others, Miyata et al. (1984, 1985,

It

\ 1986) and Hino (1987). In both cases, however, much further work is needed to
d realistically and accurately account for the boundary layer and turbulent flow
effects.

I1.2 A GUIDE TO EXPERIMENTS

Measurements in ship boundary layers and in ship wakes have been made
over many years. The review of Patel (1980) for the Stanford Conference on
Complex Turbulent Flows, which emphasized turbulence modeling, indicated that
none of the data available could be regarded as complete ensugh for the vali-
dation of stern and wake flow calculation methods because che measurements
were restricted to the mean flow. Among the most detailed mean-flow measure-
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ments on ship hulls were those of Larsson (1974) on the SSPA 720 Liner and
Hoffman {1976) on the HSVA Tanker. Both experiments were conducted with
double models in wind tunnels. These two data sets were in fact used as test
cases in the 1980 SSPA-ITTC Workshop on ship boundary layers (Larsson, 1981),
the results of which were mentioned above in connection with Figure 1. These
experiments continue to be among the most detailed available to date, and
their value has been greatly increased by the subsequent turbulence measure-
ments of Lofdahl (1982) [see also Lofdahl and Larsson (1984)] on the SSPA
Liner, and the extensive wake measurements of Wieghardt and Kux (1980) and
Wieghardt (1982, 1983), and turbulence measurements of Knaack (1984) and
Knaack, Kux and Wieghardt (1985) in the wake of the HSVA tanker. The data on
these two hull forms, therefore, are detailed enough to test several critical
aspects of ship stern and wake flow calculation methods.

The Cooperative Experimental Program of the ITTC Resistance and Filow
Committee provided an impetus to the establishment of a comprehensive data
base on the flow around ship hulls against which emerging theoretical methods
could be tested. While the focus of this program was on quantities of princi-
pal concern in tankery, it also led to some detail measurements in the viscous
flow. The present status of the program is reviewed in ITTC (1987). Of the
four hulls which were initially selected for the program, which included the
HSVA Tanker mentioned above, measurements in the boundary layers and wakes of
two have been reported to date. These are the Wigley parabolic fcrm and the
Series 60, Cg =0.60 form. 1In spite of the concerted internationai effort over
a period of years, not all of the available data are suitable as test cases
for numerical methods of the type described in the previous section. “3
pointed out in ITTC (1987), many experiments were confined to a few stations
over the stern and in the very near wake and, therefore, it is difficult to
establish proper initial and boundary conditions for them. Some involve large
scatter and uncertainty due to blockage and model attitude. Also, quite
different measurement locations and coordinates have been employed by differ-
ent experimenters even for tests on the same hull form. While this precludes
direct comparisons among data sets from different experiments and test facil-
itjes, some of the data sets are sufficiently well documented for use in
testing the capabilities of calculation methods to predict certain important
aspects of the flow.




In addition to the measurements on the Wigley and Series 60 hulls made
under the auspices of the ITTC program, data have been obtained in the stern
flow of other ship hulls and ship-like forms. Fukuda and Fujii (1985) have
reported measurements on three hulls, including a Series 60, Cg=0.8 form and
an elongated model derived from it by adding a parallel middle body to study
scale effects, by Hotta and Hatano (1985) on a tanker model, and by Hinatsu
and Takeshi (1985) on two other hulls., Of these, the first were conducted on
double models in a wind tunnel, the second used a free-surface model in a
water channel, and the last was performed in a towing tank. Only the first
two included turbulence measurements. Among the experiments on ship-like
bodies are those of Huang et al. (1983) on two models of elliptic cross sec-
tion with the same sectional area distributions as that of one of the axisym-
metric bodies which were tested earlier.

Although the foregoing summary of experiments gives the impression that
there is now a substantial body of experimental information on stern flows
over a variety of shapes, in reality the available data are not sufficiently
complete or extensive enough to be used as comprehensive test cases for calcu-
lation methods. In fact, this deficiency is not restricted to ship flows. It
is shared by practically all measurements in three-dimensional flows because
such measurements are time consuming and expensive, and the experimental
techniques themselves are not well developed. Also, the experiments are
rarely conducted for the purpose of validating all aspects of any particular
calculation method. The choice of test cases for this purpose is, therefore,
a difficult one. We shall address this issue in a later section.

II.3 SCOPE OF THE PRESENT WORK

The purpose of this report is two-fold: (a) to describe the generaliza-
tion of the partially-parabolic method of Chen and Patel (1985a) to a fully-
elliptic capability, and (b) to assess the performance of the method by com-
parisons between calculations and experiments. The first aspect is relatively
straightforward because the partially-parabolic method was described in con-
siderable detail in the above reference, and the changes in the numerical
structure of the method are not extensive. In the interest of completeness,
however, the essential parts of the method are reviewed. The method is de-
scribed in the next section (Section III).




The second task 1is more formidable for several reasons. First, it is

‘ important to identify the most critical and the most successful aspects of the
i overall method by evaluating, to the extent possible, the performance of each
: of the many components of the method. This involves the selection of simple
test cases in which a particular feature of the method can be evaluated.
Fortunately, the present method has been subjected to such tests and the
results have been reported in the literature. For example, the performance of
the k- turbulence model, together with the two-point wall functions approach,
features which are retained in the present method, has been examined in the
previous applications of the partially-parabolic method, and the capability of
the elliptic numerical scheme to handle separation and reattachment in axisym-
metric laminar and turbulent flows was demonstrated by Patel and Chen (1986b)
and Chen and Patel (1987b, 1988), respectively. Secondly, it is necessary to
evaluate the complete methodology by comparisons with experimental data on a
wide variety of realistic ship forms. Here, the previous experience is some-
what limited. The partially-parabolic method was first compared with data on
the relatively simple ship-like bodies of elliptic cross section in Chen and
Patel (1984, 1985a) and with experiments on the Wigley and SSPA hulls in Chen
and Patel (1985b). Although satisfactory agreement was observed in all cases,
some difficulties were noted, particularly in the last reference, with regard
to grid refinement and turbulence modeling. That reference also pointed out
yet another, and equally important difficulty of carrying out detailed compar-

had J

isons between calculations and experiment. This relates to the different
coordinates employed in the two, and the loss of accuracy resulting from the

~

required interpolation. While these difficulties cannot be readily resolved,
they emphasize the need to make comparisons with a number of data sets, col-
lected in different ways and on different models, to provide a more complete

3 account of the capabilities of the numerical method. Special attention is
1L therefore paid in the present work to examine the avajlable data summarized in
J the previous section to identify potential test cases. The rational for
selecting five hull forms, namely the Wigley parabolic ship, the SSPA 720
Cargo Liner, the HSVA Tanker, the SR107 Ore Carrier, and the Series 60, G =
1 0.6 form, will be discussed along with the corresponding calculations and
$ é comparisons with data in Section IV.
’
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IIT. CALCULATION STRATEGY AND METHOD

III.1. EQUATIONS AND CGORDINATES

For three-dimensional flows involving complex geometries, it is desirable
to employ body-fitted coordinate systems so that the flow in the wall layer
can be accurately resoived with a reasonable number of grid points. Once such
a coordinate system is selected for a given geometry, there remains the task
of formulating the equations of motion in that system. Two different approa-
ches can be adopted for this purpose. One of these uses what may be termed
"partial transformations", in which only the independent coordinate variables
are transformed, leaving the dependent variables (i.e. velocity components) in
a preselected coordinate system in the physical domain. This approach, which
has been used by Chen and Patel (1985a,b), among others, has the advantages
that the resulting equations are relatively simple and the results can be
readily interpreted. Since the velocity vectors, in general, do not align
with the coordinate directions, this approach may lead to increased numerical
diffusion when the angles between the velocity components and coordinate sur-
faces become large. The alternative is to transform the equations completely,
including the independent as well as the dependent variables. This approach
has been used by, among others, Richmond et al. (1986), Stern et al. (1986),
and Ogawa and Ishiguro (1987). The use of contravariant velocity components
in such a complete transformation allows a much more accurate resolution of
the boundary-layer flow near a solid surface. However, the fully-transformed
equations involve many geometric coefficients and their higher-order deriva-
tives. This not only leads to increased computer storage requirements but
also can adversely affect the solution of the flow equations if the coeffici-
ents are not evaluated accurately. In many practical applications, it is not
necessary to use the complete transformations if the basic coordinate systems
are chosen carefully so as to avoid large skew angles between velocity compon-
ents and the faces of the computational cell.

In the present study, which is concerned with external flows past ship
forms, the restrictions associated with the partial transformations can be
easily alleviated by choosing cylindrical polar coordinates as the basic
coordinate system in the physical plane. A detailed description af such
partial transformations and the corresponding equations was given in Chen and
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Patel (1985a). For the sake of completeness, we shall briefly describe these
in the followine,

Consider the equations of motion in cylindrical coordirates (x,r,0) for
unsteady, three-dimensional, incompressible flow. The exact Revnclds-averaged

equations of continuity and momentum of the mean flow, in dimensionless form,

| are,
|
: 3y 19 13W
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where x = %, r = %, 8 are the dimensionless coordinates normalized by a char-
acteristic length L, and t is the time normalized by L/Uo. U, V, W are,
respectively, the longitudinal, radial and circumferential components of mean
velocity normalized by the characteristic velocity U,. p 1S the pressure
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normalized by pUOZ. Re = UOL/v is the Reynolds number defined in terms of U,
L and molecular kinematic viscosity v. The barred quantities uu, uv, etc.,

are the Reynolds stresses, normalized by Ug.

In the present study, the two-equation k-e turbulence model is used to
model the Reynolds stresses. Fach stress is related to the corresponding mean
rate of strain by an isotropic eddy viscosity v, as follows:

S W=y e 5

- W=+ T )

-W=vt(%%—+%}w-% (5)
- = v (2§ -2k

-wWev(25L) -2y

The eddy viscosity is related to the dimensionless turbulent kinetic energy k,
and its rate of dissipation e, by

2

_ k
Ve = C e (6)

where cu is a constant, and k and € are governed by the convective transport
equations

ok ak 3k W 3 i 9k
st Vax *Var 798 - ax (R ax )

36 ° 3 Ix
X Rk X
13 1. 3k 1.3 (1 3k
toar g ray ) v+ 5355 (38 +6-¢ (7)
k r k
be , e, 2t Wde 3 (1 de
Tt UaetVartyae = ax (R ax)
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where G is the turbulence generation term:

6 =v 2 (G925 D2+ R B2 (L3, e

Gy + 57+ (G 55 + 30 - DY)

(9)

The effective Reynolds number, R¢, is defined as

Y/
) 1 t
S N 4 (10)
Ry Re o,
Where ¢ = (U,V,W,k,e). The constants 1in these equations were taken as
Cu = 0.09, Cs] = 1.44, C€2 = 1.92, OU = °V ST 1.0, o, = 1.3. We note
again that vt, k, and € are all made dimensionless by the characteristic

velocity and length scales, U, and L, respectively.

Using equations (5, 6 and 10), the momentum equations (2) through (4) and
the turbulence-model equations (7) and (8) can be written

v ov
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xR Vk-G+e=0 (14)
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2
- Llg% L. & £ .
Rth—: Ce]kG+C52k =0 (15)

It is convenient to rewrite these transport equa ions (11) through (15) in the
following general form
2

V¢=R¢ [(U-b¢ut’x)¢x+(V"C\)

¢ t,r) ¢r *

1 1
(w - d¢ r vt,e) (r ¢e) + ¢t] + S¢ (]6)
where ¢ again represents any one of the convective transport quantities: U, V,
W, k or e, and the subscripts x,r,8 denote derivatives. The corresponding

coefficients b¢, c¢ and d¢ are

12




by = 2 cy = s dy = 1
bV =1, cy = 2, dV =]
bw =1, Cy = 1, dw =2 (17)
] L
b = = C, = . d =
k O k Sy k ok’
1 ] 1
be g s ce IR de g
€ € €
and the source functions s¢ for U, V, W, k and € are, respectively,
s =R Ip, +Ekoev, Voo (v, )] (18a)
USSPy T3 R Ve YT Y Vt,eY M
T N T DU T
Sy T Ry WP ¥ 3 %" Ve xYr r t,0/ % T r r
sy + (18b)
r r
- 1 21 W 1 - 1 M
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Vv 2 W
c vy ) @ -Gy s (18¢)
r r
sk--Rk (G - ¢) (18d)
= (C,56-¢C 5) (18e)
Se = =R (el G- Cep i €
Equations (11) through (15) are coupled, nonlinear, partial differential

equations and, together with the continuity equation (1), are sufficient, in
principie, to solve for the six unknowns p, U, V, W, k and € when proper
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(a) Body-Fitted Coordinates

Three-dimensional geometries, such as ship hulls are usually quite com-
plex and cannot be conveniently described by simple orthogonal coordinate
systems. It is, therefore, desirable to introduce analytic or numerical
coordinate transformations which simplify the computational domain in the
transformed plane and facilitate applications of the boundary conditions. In
the present study, we shall use a numerically-generated, body-fitted coordin-
ate system, since it offers the advantages of generality and flexibility and,
most importantly, transforms the computational domain into a simple rectangu-
lar region with equal grid spacing.

In the numerical grid-generation technique, we seek a coordinate system
for the numerical analysis of the flow in the domain D shown in Figure 2.
This domain is bounded by an arbitrary hull surface S, the ship centerplane C,
the free surface or water plane W, the upstream and downstream sections A and
B, respectively, and an external boundary I. Section A may be located at a
hull section where the boundary layer is thin to avoid calculation of the flow
over the bow or it may be placed far ahead of the ship if the bow is to be
included. The downstream boundary B may be placed at a section in the far
wake. The choice of the external boundary I is also arbitrary. It could be
far away from the hull or it could coincide with the walls of a towing tank or
wind tunnel. The basic idea of a boundary-conforming curvilinear system is to
find a transformation such that the boundary surfaces of the physical domain D
in cylindrical or in any other basic orthogonal coordinate system, say
(x], x2, x3), are transformed into boundaries of a simple rectangular domain
in the computational space (£, n, £) shown in Figure 3.

With the values of the curvilinear coordinates specified on the boundar-
jes of D, it remains to generate the values of these coordinates in the inter-
jor of D. This is a boundary-value problem in the physical field with the
curvilinear coordinates (£, n, t) as dependent variables and the orthogonal
coordinates (x1,x2,x3) as the independent variables, with boundary conditions
specified on the curved boundaries. Thus, a system of elliptic partial dif-
ferential equations can be used to generate the cocrdinates since the field
solution of such a system is determined entirely by the boundary conditions.
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However, the elliptic system must be chosen such that it precludes the occur-
rence of extrema in the interior of the domain and assures a one-to-one map-
ping between the physical and transformed planes.

For the general three-dimensional but simply-connected domain of interest
here, a set of Poisson equations of the form

VZE - f](a, n, ¢)
vn = £, n, ¢) (19)
vl = £, n, ¢)

or simply
ol < £, i=1,2,3 (20)
1 2 3

withg =¢€,8 =n, 8 =¢

may be taken as the coordinate generating system. Here, V2 is the Laplacian
operator in orthogonal coordinates x1. The nonhomogeneous source functions £l
may be assigned appropriate values to yield the desired concentration of
coordinate surfaces. The choice of these functions for specific applications
will be discussed later in Section III.2(a). Equation (20) is subject to
either Dirichlet or Neumann boundary conditions on the boundary surfaces,
which are surfaces of constant 51.

Since it is desirable to perform all numerical computations in the trans-
formed (£, n, ¢) plane with equal grid spacing, i.e., A =4An =4g7 = 1,
equation (20) is cumbersome to use., It is more convenient to invert it and
solve for the orthogonal coordinates. In other words, the dependent and
independent variables are interchanged so that the orthogonal coordinates

(x],xz,x3) in the physical plane become the dependent variables, with the
curvilinear coordinates (£, n, ¢) as the independent variables. The boundary-
value problem in the transformed field then involves generating the values of
the orthogonal coordinates x1 = x] (¢, n, ¢) in the interior from the speci-
fied boundary values of x  on the rectangular boundary surfaces of the trans-
formed field. Since the boundaries in the transformed plane are all rectangu-
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lar (constant £, n, or ¢ plane), these computations are carried out on a cubic
grid regardless of the shape of the physical boundaries.

In obtaining the inverse transformation of equation (20), several general
relations between the physical (x],xz,x3) and the transformed (£, n, g) coor-
dinates are required. The basic expressions may be found in many reference
books, for example Aris (1971) and Lass (1975), although some of the relations
are not explicitly given. A summary of some important relations are given in
Appendix I of Chen and Patel (1985a) with specific reference to the transfor-
mation between an orthogonal coordinate system (x],xz,x3) and general coordin-
ates (€], 5?, 63) = (€.n, £). The latter are not necessarily orthogonal.

With these transformation formulae, eguations (20) become:

h.h
3
72y 1 (23)

X =
ORI S
22 . 12 M (21)
hihahs 5,2 = 1y
23 . 12
hyhs 5,3 | hs
where
2 2 2 2 ?
105 22 8% 33 2%, 12 2 13 2
R e B it R A R T T A T 7
9g an )
23 32 13 23 . 3

(21a)

h; are the metric coefficients in the chosen orthogonal coordinates x!

, and
gij is the conjugate metric tensor in the transformed coordinates 5](=£,n,c).
Note that, for cylindrical polar coordinates (x, r, 8), hs are (1, 1, r),

respectively.

Equations (21) can be solved numerically in the transformed domain
(¢,n,z) when proper boundary conditions are specified on all bcundary
surfaces (i.e., constant £, n and ¢). If £l - £ - g3 0, the transformation
is said to be homeomorphic. In general, however, non-zero values are assigned
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to these functions to exercise control over the grid distribution. Solutions
of equations (21) to obtain numerical grids for particular shapes are present-
ed in Section II1.2(a).

(b) Reynolds Equations in Transformed Coordinates

Although, as noted earlier, it is possible to transform both the indepen-
dent (x], xz, x3, t) and the dependent (U, V, W, k, €) variables to
the (¢,n,z) coordinates, we will consider only the transformation of the inde-
pendent variables, leaving the velocity components U, V, W in the original
(x1, xz, x3) coordinates in the physical plane. Also, as mentioned earlier,
the cylindrical polar coordinates (x, r, 8) appear to be most convenient for
the description of the flow field around practical ship forms. Thus, in this
study, equations (1) and (16) [i.e., (11) through (15)] will ve used as the
basic equations in the physical plane to derive the equations ir the trans-
formed domain (&, n, ). Transformed equations resulting from other ortho-
gonal coordinates, which may be useful in other applications, are given in
Appendix I of Chen and Patel (1985a). Using these general transformation
; relations, equation (16) for an unsteady three-dimensional flow can be written
| in the following form:

1 22 33 12 13 23
9 ¢5£+ 9 ¢rm+ 9 ¢cc+ 29 ¢€n+ 29 ¢£c+ 29 ¢nc

.o P D . S

R
1 2 3, 2% 0 1 2 3
+F0pe £k R0 = 37 Loy (oot DYe+ bYe,)
{ 2 1 2 3 3,7 2 3
+ oy (b2 ¢£ + b2 ¢t b2 ¢C) +ay (b3 ¢E+ b3 ¢n+ b3¢c)]
+ R¢¢t +s, (22)
i
T where
4 a] =y - Ei (b1 v, .+ b2 v + b3 v
¢ J 1 7t,g 1 "t,n 1 "ty
c
1 2 _y b ) 2 3
a¢ =V 3 (b2 vt,5+ b2 vt’n + k ’”) (23)
[
1
3_ 4% ] 2 3
a¢ = | 3 (b3 vt’§+ b3 vt’n +b3 vt’c)
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and b, s and d¢ are as defined in equation (17). Hereafter, the subscripts
(¢,n,z) on ¢ (= U,V,W,k,e) and v, denote derivatives.

Equation (22) is identical with equation (A-84) in Appendix I of Chen and
Patel (1985a). It can be rearranged into a general convective-transport
equation of the form

9 bget o700, 0700, = 20+ 2BLo 20+ R+ S, (24)
where
R
_ % 31, .32, .33, 3
2A¢ =3 (b]a¢ + b2a¢ + b3a¢) f (25a)
R
e 21,22 23y .2
284) =3 (b]a¢ + b2a¢ + b3a¢) f (25b)
R
£ (bla] + b2 4 p13) - ¢
2C¢ (b a, + b2 st b3a¢) f (25¢)
. 12 13 23
S¢ =Sy - 2(g by t9 b + 9 ¢nc) (25d)

and the source functions s¢ are given by

2

3 2
Pt b] p;) (b k +H

]k +b k )

1.1
v = Ry g by pgtd

wn
n

- ﬁ?"b; o+ bg I ot bg t,c)(b1V€+ b8V + b v )
ﬁg-(b; v ot bg v b3 t’c)(b o+ b, + b3 )] (26a)
W1, .2 .3 2
Sy = Rv {- el (b2p€+ b2pn+ bzpc) + &= (b k + bzk + b k )
] ﬁi'(b}vt,€+ % vy # b3 vt’;)(b;U£+ b3y, + bau,)
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1,1 2 3 1,1 .2
=g (b3 vy gt by “t,n* by vy )7 (boh+ boW,
03 U) - 4D+ &5 (bguer b3+ b3W,) + 2 (26)

2

. Ww 1,1 3 2 .1 2 3
Sy = Ry (55 + 5 (bgpg+ bpp+ bip, ) + 33 (boke + bk + bk, )

2

1 2 3
t, c)(b3U + b3U + b3U )

"R (bqvy g+ bV o+ D

1,0 2 W2 30 W
=7 Doy p* Doy o bz“t ()L b3V + b5V, + b3V ) - ¥
2

2] 2 3 2. 3 y
- + bov At bav, )} rJ (b3V + b3Vn+ b3VC) + ;? (26c)

Sk = - Rk(G - E) (26d)
=-R_ (C, %G6-C e (26e)
e T 7 Re a1k e2 k ¢

with

2 3.,2 2 1 2 3., .2
{—— (b]U + b]Un+ b]Uc) + 35 (b2V£+ b2Vn+ bZVC)
A 2 3 Yq2
+2 [J (b3wg+ bW+ b3k, ) + |

l_ 2 3 1 2 3, \2
+ (b Vg+ b]V + b]v + b2U£+ b2Un+ b2U§)

J
J__ ] 2 3 1 2 3, ,2
(b]wg+ b]wn+ b]wc+ b3U + bBUn + b3U;)

JZ g
l 2 3 1 2 3 W42
+[5¢ 2w + boWy + b+ baVpt bV + b3V, ) - 717 (26f)
The radius r, the geometric coefficients bg and 913, and the Jacobian J
which appear in the above equations are functions of the coordinates only.
When either analytic or numerical transformations are employed to generate the
grid distribution, r = r(€, n, ) is known in the transformed plane. The
geometric coefficients bJ and g 1J for the present transformation are
19
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and

where

and

=499

111 -
b2 b3 r(rnec- rcen) r(xcen' xnec) *aTe™ XM
2 2| _ ) - -
b2 b3 = r(rceE rgec) r(xgeC x§6€) X, T xgrc (27)
3,3
by b3 | rlrg8u= 8 ) rlx 8- %8 ) xr - X
- o2
922 933 9232
= g11 933 - 9132
91%]922 - 912
S99, 7 913 %3 7 912933 (28)
9932 = 912 923 = 913922
=912 913 - 92391
2 2 22
XE + rg +r eg
)(r2‘+r‘t2]+r29§ ;
2 2 22 |
Xg + rp+r Gc (29)
_ 2
9o1 T XgXp el t T egan
_ 2 ‘
937 = XgXg * rery + 18,8,
_ 2
93p = XpXg F Tl F 188,

_ i 2 2
9 =917 92 923 * 2912 913 923 - (9p3)° 997 - (943)¢ g9y
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- (912)% 933 (30)

is the determinant of the metric tensor 933 Also, the Jacobian can be ex-

pressed as
_ XE * xc
J=vg-= L (31)
reg ren rec

It should be recalled here that (U, V, W) represent the velocity compon-
ents in the physical cylindrical polar coordinates (x, r, 8). Equations (24)
through (26), together with the equation of continuity (1), which transforms
to:

1
2

2
2

1 1 2 2 3 3 K
(b1U + b,V + b3W)E + (b]U + b,V + b3W)n + (b]U + b2V + b3w)§— 0 (32)
dare the Reynolds-averaged Navier-Stokes equations for unsteady, three-dimen-

sional flows.

IT1.2. NUMERICAL SOLUTION PROCEDURES

In this section we describe the numerical techniques used for the solu-
tion of the grid-generation equations (21), the fully-elliptic convective-
diffusion equations (24), and the equation of continuity (32). Details of the
numerical method used in grid generation, together with some examples, are
presented in Section (a). The finite-analytic numerical method of Chen and
Chen (1982, 1984) and Chen and Patel (1985a) is then revised and extended to
solve the five transport equations for ¢ = U,V,W,k and € with a guessed pres-
sure field. This is described in Section (b). The continuity equation is
used to obtain equations which enable the determination of the pressure and
pressure-correction fields from the velocity field. This procedure is des-
cribed in Section (c). The treatment of the boundary conditions is described
in Section (d), and the overall numerical solution algorithm is summarized in
Section (e).

21

TP S TIKTFTV A I Ay o i, s 2 A - o T
» T AR

3 o P



b-‘-—

{(a) Grid Generetion

The numerical curvilinear coordinate system 1is constructed by solving
equations (21). Because the orthogonal coordinates xi ip the physical plane
can be selected arbitrarily and the control functions f! are independent of
these coordinate, it is possible to generate the numerical coordinates in
terms of the simplest Cartesian coordinates (x,y,z), and then transform them
into other orthogonal coordinates which are chosen to specify the velocity
components in the equations of motjon. As noted earlier, it is desirable to
use cylindrical polar coordinates as the basic coorcinate system for the
present applications to three-dimensional ship forms. It is also desirable to
choose the transverse sections of the hull as the constant-£ stations,
j.e., £ = E(x), so that the computing effort required for grid generation and
fiow calculations can be significantly reduced. With this choice, equations
(21) reduce to

IR 1

g Xegt Fix =0

11 22 33 1 13 23
g r€g+ 9 ot g rcc+ 2g ngn+ 29 r€C+ 29 rnC

1 2 3 1
+ firg+ firg+ fr.= <
13 n T r (33)
1 22 33 12 13 23
9 Oggt 9 Ot 90+ 29 0+ 29 TH + 29770,
+ f]e 2 3

et f en+ f 6; =0

relating the numerical coordinates (€,n,z) to the cylindrical coordinates
(x,r,8) in the physical plane. Equivalently, these equations can also be
written in Cartesian coordinates (x,y,z) as

1 1

9 Xt f Xe = 0
11 22 33 12 13 23
9 Yeet 9 Ynnt 9 Vet 29 Vent 29 Vet 2977,
+fly + fly e Py =0 (34)
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1

z 3. _
+fz€+fzn+fzc-0

where y = r sin6, z = r cosé, and & is the circumferential or girthwise angle
measured from the keel to the waterline. The control functions £ are the
same in both coordinate systems, and, in principle, equations (33) and (34)
yield the same numerical coordinates if the same control functions are em-
ployed. Numerically, however, the xi-coordinates used to specify the hull
geometry influence the accuracy of the calculated numerical coordinates due to
truncation errors. Since, for ship hulls the variation of the surface coor-
dinates (y,z) is much smoother than that of (r,8) it 1is preferable to use
equations (34) instead of (33). The numerical coordinates thus obtained are
then transformed to (x,r,8) which are used to specify the velocity components
in the equations of motion.

For the numerical solutions, it is convenient to rewrite equations (34)
in the form

11 _
g (ng' 2axg) =0 (353)
n 22 33
9 (Yge- 2ayg) + 97 (Y- 2oy,) + g (y;;- chc) (35b)
+ 29]2y§n+ Zg]Bygc + 2923ync= 0

11 22 33
g (ZEE- 2azg) + g (Znn' 2bzn) + g

2 1
+ Zg1 Zg, * 29 32&; + 2923ch= 0

(z,,.- 2cz,)
S (35¢)

where a, b and ¢ are modified control functions defined by

1
28 = - “fTT
29
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2
2b = - ~5 (36)
293
.F
2C = =~
Zg33

In order to solve equations (35), it is necessary to prescribe the boundary
conditions and the control functions. The boundary conditions are determined
by the preselected size of the solution domain and the desired number of grid
points in the axial (¢), radial (n) and circumferential (¢) directions.

In all the calculations considered here, the first stationg& =1, is
Tocated at x = 0.3 where the boundary layer is thin, and the last station & =
LL is placed in the far wake where upstream viscous diffusion is negligible.
In the radia® direction, there are MM points with n = 1 corresponding to the
hull surface or wake centerplane, and n = MM being the exterior boundary. Tne
latter is placed typically at a distance of the order of one ship length from
the hull for calculations corresponding to an unrestricted stream.
Alternatively, it may be chosen to coincide with the walls of a wind tunnel or
towing tank. In the girthwise direction, NN stations are used, with ¢ = 2 and
NN - 1 corresponding to the keel (8 = 0°) and the waterplane (8 = 90°),
respectively; and ¢ = 1 and NN are used to enforce the plane-of-symmetry
conditions. In order to avoid a sudden change of numerical grid near the
stern region where the hull ends abruptly, an imaginary wake centerplane is
specified to ensure a smooth variation of geometric coefficients in this
region, The vertical extent of the wake centerplane is reduced linearly up to
a station & = LE in the wake. The depth of the centerplane is kept constant
beyond that station.

In general, the grid control functions f1 are three-dimensional and can
be arbitrarily specified to yield the desired grid distribution. There are,
however, no general rules for the determination of the most appropriate grid-
control functions. For the present study, the grid-control functions used in
Chen and Patel (1985b) were modified and generalized to provide control of the
numerical coordinates in the radial as well as the girthwise directions. In
particular, the function £ which controls the grid concentration in the n-
direction 1is continuously adjusted to achieve a direct control of the grid
spacing between the constant-n lines. The grid-generation technique is out-
lined below.
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The choice of x = x(&) simplifies the control function a because it is
uniquely determined from equation (35a), i.e.,

X
2a = ;53 = fn(E only) (37)
£

In other words, the function a is related to the distribution of the axial
stations, which is chosen to concentrate grid points near the stern and in the
near wake.

In a similar manner, the function ¢ is related to the grid distribution
in the circumferential or girthwise direction, 6 = tan'](y/z). In general, ¢
can be a function of &,n and ¢ to yield desired grid spacings between the con-
stant-¢ lines in the ¢- direction. For the present applications, however, it
is sufficient to employ a one-dimensional control function c(z) which is fixed
in the axial as well as the radial directions, i.e.,

)
2¢ = Egg = fn(z only) (38)
g

with 8 = 8(z) prescribed on the outer boundary at the upstream station.

The specification of the function b, which controls the grid distribution
in the n-direction, requires greater care since it must satisfy several con-
flicting requirements at the same time. First, in the present treatment of
the wall boundary conditions using wall functions, it is necessary to require
at least two near-wall grid points to lie in the logarithmic law-of-the-wall
region (say 50 < yt < 500). Second, it is desirable (although not necessary)
to have an orthogonal grid in the wall region to facilitate the application of
the boundary conditions. Third, the grid concentration must be such that
there is a sufficient number of points across the boundary layer whose thick-
ness varies greatly in the axial as well as in the girthwise directions.
J Fourth, and perhaps the most difficult, is the problem of obtaining a suffici-
ently accurate solution in the neighborhood of geometric singularities. It is
obvious that a three-dimensional control function is needed to make the local
4 adjustments to meet all these requirements.

—~

“?m

9 As noted above, the grid-control functions used in Chen and Patel (1985b)
were modified by adding a three-dimensional local correction function to
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provide greater control of the grid distribution near the hull surface and the
wake centerplane. We choose

b = b0+ bC (39)

where b, is the two-dimensional grid control function given in Chen and Patel
(1985b), i.e.,

33

2b_ = l—-(r N
o r,'m g22 44 rg22 r=02
40
='l_(znn+g2—zzcc) v
n g g =2

fn(g,n)

Since this control function is obtained from the prescribed grid distribution
z = z(&,n) and the associated transverse curvature z,, on the keel plane ¢ =
2, there 1is very little control for the grid distribution away from the
keel. This was evident from the results presented in Chen and Patel (1985b)
which showed a lack of near-wall grid concentration around the waterplane,
especially in the stern and the near-wake regions. In order to ‘improve the
resolution in the wall layer and the near wake, a three-dimensional correction
function is applied to control the normal distance distribution in the girth-
wise direction by

b, = CALE z)e d(n-2) (a1)
where A(E,z) = ﬁ%%f%f%%-- 1

and n(&,2,t) is the normal distance between n = 2 and the body surface which
is n = 1, The control parameters ¢ and d are chosen to yield the desired grid
distributions. Note that A(E,z) = 0 if n(£,2,z) = n{€,2,2) for all girthwise
stations. In other words, if the control function b is updated continuously,
the final correction function will be zero when the solution converges, and
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the normal distance thus obtained will be constant in the girthwise direc-
tion. It is, however, not necessary to satisfy this relation exactly although
it is desirable to be able to control the near-wall grid spacing directly.
For the present calculations, a compromise solution was arrived at by updating
b only a few times during the iterative process and then fixing it when a
satisfactory grid distribution was reached. The correction function b, was
updated every 20 iterations between iteration numbers 40 and 200, and then
kept unchanged for subsequent iterations. The grid control function thus
obtained was enforced only upto a stati.n &€ = MIB near the stern. Beyond
that, the fz function is reduced linearly to zero, and remafined zero in the
far wake. For consistency, the grid distribution z(§,n,2) on wie keel plane
was allowed to move freely based on the prescribed function b in this
region. It should be noted here also that the correction function diminishes
exponentially away from the hull surface and wake centerplane. This leads to
a nearly-orthogonal numerical grid for much of the solution domain while
providing the control of the grid spacing in the wall layer.

Equations (35), with the control functions specified by equations (37)
through (41), were solved by an exponential-linear scheme described in Chen
and Patel (1985a). With this scheme, the discretized equations (35) can be
written

22 33

N
(2g" 'a coth a + 29" b coth b + 2¢g7"c coth C)E,n,c¢£,n,c

1 -a a
(g 'a csch a)g,n,;(e ¢£+1,n,c+ € ¢5-],n,c)

22 b

t e, )

-+

-b
(g""b csch b)g (e o

,n ,C ,TH'] ’C ,n-.],;

33 -C
(g”’c csch C)g,n,;(e ¢£,n,;+1

-+

c
te ¢E,n,c-1)

12
O.SQE ,n ,c(¢£+1’n+19;+ ¢g']’n-]’;- ¢£+]’n-]’c- ¢§-1,"1+1,C)

+

13
0.5g s,n,c(¢£+],n,c+1

+

O ne-1" Yeeln -1 fe-1n 241

23

O'Sgs,n,c(¢€,n+1,c+1 te

) (42)

+

E ,7\'],;"]- ¢E ,TH'] ’Z;"]- ¢€ ,n"],C‘H
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where ¢ represents either y or z. With the Neumann boundary conditions speci-
fied on all boundaries of the constant-E1 stations, equations (42) are solved
by a tridiagonal-matrix algorithm using 1ine-by-1ine iterations.

(b) Finite-Analytic Discretization for the Transport Equations

In order to correctly handle the elliptic nature of the flow past arbi-
trary three-dimensional shapes, the finite-analytic method of Chen and Chen
(1982, 1984) is revised and extended to solve the five transport equations for
mean velocities (U,V,W) and turbulence quantities (k,e). The most general
version of this method would involve an analytic solution of the linearized
transport equations in a three-dimensional elenent and would result in a 28-
point discretization formula. While such a scheme may be required for the
solution of highly three-dimensional flows, for applications to many aerody-
namic and hydrc-vnamic problems it suffices to use a simplified method to
reduce computer time and storage. Here, we adopt a hybrid method which com-
bines a two-dimensional local analytic solution in the nz-plane with a one-
dimensional local analytic solution in the £- direction. Details of this
numerical scheme are described in the following.

In the finite-analytic approach, equations (24) are locally linearized in
each rectangular numerical element, A = &n = Az = 1, by evaluating the coef-
ficients of the convective terms at the interior node P of each local element
(Figure 4), i.e.,

N 22 33
% et p Pant 9p Pyg= 2(Cylpbet 2By ot + 2AR D0+ (R Dp0et (Sy)p  (43)
Introduction of the coordinate-stretching functions
E eI, on ==, = (44)
in equation (43) reduces it to the standard three-dimensional convective-

transport equation described in Chen and Chen (1982, 1984), 1i.e.,

¢ + ¢ + ¢ = 2Co .+ 2Bp .+ 2Ab .+ Rp.+ (S,) (45)
5T Y %t A L T 4
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For the type of applications considered here, it is convenient to decom-
pose equation (45) into a one-dimensional and a two-dimensional partial dif-
ferential equation in the following way:

* * %
200 = b 4 4t R¢¢t + S¢= GE ,n ,z, t) (47)
£ £ &

* * *
¢**+¢**‘ZB¢*'2A¢ =G(§,H,C,t) (48)

*
nn 4 4 n 4

If we further require the source functions G and S¢ to be constant in each
local element and the time derivatives to be approximated by a backward-dif-
ference formula, equations (47) and (48) reduce to the standard one- and two-
dimensional convective-transport equations described in Chen and Chen (1982),
respectively. The analytic solution of the one-dimensional equation (47) can
be readily obtained as:

*
2CE

*
¢ = afe -1) + bt + ¢ (49)

By substituting the exponential-linear solution (49) into equation (47), the
source function G{0,0,0,0) = g becomes
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= (2C¢g*- ¢6*£*+ Ry 4+ Sy)p

R n-1
with

Co = gecz Co = Ce"cz_
U~ 2 sinh C » D~ 2 sinh C2

where the subscripts U and D denotes the upstream and downstream nodal values

(Figure 4), respectively, superscript (n-1) denotes the value at the previous
time step, and T is the time step.

By specifying a combination of exponential and iinear boundary functions,
which are derived from the natural solutions of the governing equations, on

*
all four boundaries, n"= ¢ k and r =+ h, of the transverse section of each
local element (£-plane), i.e.,

*
) T *
(k.5 ) = an(e 1) + bnc +Cp

*
ko 2K *
(-k,z ) = as(e 1) + bsc + ¢
* {51)
*

*
* - 2Bn _ R *
¢{n ,-h) = aw(e 1) 4 bwp +C,

where a, b and c are constants, the two-dimensional equation (48) can be
solved analytically by the method of separation of varishles or any other
analytic technique. Details of the solution procedure are described in Chen &
Chen (1982, 1984). When the local analytic solution thus derived is evaluated

at the central node P of the element, the following nine-point finite-analytic
algebraic equation is cbtained:

% = One®net Ot Cse®se® Cowlow * Cec®ect Cuclue

* Cuebnet Coctse Cp9 (52)
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where

2Bk
Cse = Goosn B Pa
_ -2Bk
Che =@ Cgc
Ah
_ e
Cue = Goosn ! P
-2Ah
Cec= ¢ Oy
Ah+Bk
CSN - (4 cosh Ah cosh Bk)(] B)
-2Ah
b Cog = & ™ Cqy
3
_ -2Bk
Chy = € Coy
_ _-2Ah-2Bk
CNE = e Csw
J _ h tanh Ah _ k tanh Bk

! Pp = 4E2 Ah cosh Ah cosh Bk coth Ah

V.

Bh _coth Bk

\ Pp =1+ cothan Pam V)
and
« - (1" h)
£, = ¢ e —
' ! ((Ah)2+ (Amh)z]zcosh /A2+ Bz+ >§ k
%
W o= fm o l
J Ah = {n 2) L
The above coefficients are simple rearrangements of those given in Chen &
1 che.,, hut are mo~e corvenient for efficient numerical calculations. Note that

sone of tnem ~re interrelated as follows:




- —————

PO O

Cne + Csc = Pa

CNE + CNW + CSE + Csw =1 - PA - PB

Since both Pp and Py are positive and (PA + PB) < 1, the finite-analytic
coefficients are always positive. Also, the exponents in these coefficients
provide a gradual upwind bias as the cell Reynolds numbers |2Ah| and/or [2Bk|
increase. Thus, the behavior of the convective-diffusion equation is properly
captured and numerical diffusion is minimized due to the inclusion of all
corner points. For large cell Reynolds numbers, the series summation in Eo
can Be avoided by considering the asymptotic expressions of PA and PB based on
the theory of characteristics, i.e.,

Mk coth Ah > Bh coth Bk : P,= 0, P,= 1 - Bh coth Bk/Ak coth Ah

A B
B J, PA= 1 - Ak coth Ah/Bh coth Bk

(54}

Ak coth Ah < Bh coth Bk : P
Since the "downstream" infiuence is negligible at large cell Reynolds numbers,
the above approximations do not introduce a significant error in the solution,
but the computing time is greatly reduced.

By substituting the nonhomogeneous term g from equation (50) into equa-
tion (52), a twelve-point finite-analytic formula for unsteady, three-dimen-
sional, elliptic equations can be obtained in the form

1

b, = {C byt Con @it Corbort Cor@art Copdpont Cpnd
p 1+ CP[CU+ CD+ % ] NEYNE™ “NW'NW™ “SETSE™ “SW'SW™ “EC'EC “WC'WC
F b+ Codot CalCd + Coot o™y L ¢ (513 (55)
NC'NCT “s¢’sc™ “p*“u'u” “p'D" t *p P ’p
or
é, = 1 {gc ¢ .+ Co(C o+ Co +R¢n'])-C(S)} (55a)
P ]*CP[CU"CD"}B] 7 nb Tnb” WPUUTUT 0D 1 TP P %P
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where the subscript nb denotes neighboring nodes (NE:northeast, NW:northwest,
etc.). It is seen that ¢P depends upon all the eight neighboring nodal values
in the transverse plane as well as the values at the upstream and downstream
nodes ¢U and ¢D’ and the values at the previous time step ¢g']. When the cell
Reynolds number 2C becomes Tlarge, CU + 2C/% = (C¢)P and CD + 0, and equation
(55) reduces to the partially-parabolic formulation of Chen and Patel (1985a)
which used CU = (C¢)P and CD = 0. Thus, the extension of the earlier par-
tially-parabolic method to the present fully-elliptic form is straightforward,
and if ¢D is obtained from the previous time step, the same algorithm can be
emp lcyed for both formulations.

Since equations (55) are implicit, both in space and time, at the current
station of calculation, their assembly for all elements results in a set of
simultaneous algebraic equations. These equations are solved by the tridiag-
onal-matrix algorithm. Because it 1is not necessary to obtain a fully-
converged intermediate solution for steady flows, only ten Tine-by-line inter-
nal iterations are used during each global sweep. Furthermore, the finite-
analytic coefficients appearing in equations (55) are not updated during these
internal iterations for economy of computation time.

(c) Solution of the Continuity Equation: Velocity-Pressure Coupling

If the pressure is known, equations (55) can be employed to solve the
five convective-diffusion equations (24) for U,V,W,k and €. However, the
pressure i3 not known a priori and must be determined by requiring the velo-
city field to satisfy the equation of continuity {32). Since a direct method
for the simultaneous solution of all six equations is not feasible with pres-
ent computer capacity, it is necessary to convert the equation of continuity
into an algorithm for the calculation of the pressure field. The SIMPLER
algorithm of Patankar (1980) has been modified and extended for this purpose.
A staggered-grid system is adopted. Figure 5 shows the locations of the nodes
for J,V,W, and p in this grid. The turbulence quantities k and € are evalu-
a“ec at the pressure nodes. The dashed lines represent the control volume
-aces, and the pressure is calculated at the center of the control volume.
For convenience, Uy, Vs Wy and pp in Figure 5 are assigned the same index,

j.e., they are denoted by U.__, V W and psnc’ respectively. Recall

Eng® Eng? "gng
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that the velocity components U,V, and W are in the longitudinal, radial and
circumferential directions. In other words, they are, in general, neither
perpendicular to the control surfaces nor in the direction of the coordinate
lines. However, due to the choice of the cylindrical polar coordinates in the
physical plane, these components do not become parallel to the control sur-
faces.

In the st2ggered grid, the twelve-point finite-analytic formulae (equa-
tion 55) for the momentum equations yield the velocity ccmponents:

. 8 (Ru)d
Ug = Ry & Gl Cal(Q)al * (Gplglar = Uy - (Syla)
]Tcd(CU+ Cot 1 )4
8 (Ry)
= ] ~V'n n-1_
v, = _L. {ﬁ CopVabt Cal(CIVy *+ () Vgt T Vo = (Sy)
W (Cyt Cpt 7 ),
8 ()
- 1 2W'e  n-1
W = Ry {ﬁ Cop¥nnt Cal(Cylahy + (Cplhygt —— W = (S) ]
HC(Cyt Cpt T ),
(56)

where Cq, Cp and Co are the finite-analytic coefficients Cp evaluated at the
staggered velocity nodes d, n and e in Figure 5. Note that the above equa-
tions contain the pressure-gradient terms inside the source functions. An
equation for this unknown pressure field is obtained as follows.

If we decompose the actual velocity field (U,V,W) in the momentum equa-
tions (56) into a pseudovelocity field (B,V,ﬁ) plus the pressure-gradient
terms contained in the source functions, i.e.,

¢ R

o~ d w1203
Ug = Uy Ry (=5 (bypg+ Dy, + bp )
1+C (C + CD+ . )d
C R
-V . n N 2 3
Vo=V, o { 3 (b2pE+ b5p,* b2pc)}n (57)

a'A
1+Cn(CU+ CD+ T )n
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so that the pseudovelocities contain no pressure terms, then an equation for
pressure can be derived by requiring the velocity field to satisfy the discre-
tized equation of continuity (32), i.e.,

1 1 1 1 1 2 2 ?
V + b3w)d~ (b]U + b2V + b3W)u+ (b]U + bZV + b3w)n

1
(D]U + b2

2 2 3 3 3 3 3 3
V + b3W)s+ (b]U + bZV + b3W)e— (b]U + b2V + b3w)w- 0 (58)

2
- (b]U + b2

»e

The resulting pressure equation will contain many pressure nodes (see Muraoka
(1980, 1982} for example) if nonorthogonal coordinates are employed. It s
therefore desirable to simplify the algorithm by dintroducing modified
9 pseudovelocities (U,V,W) by decomposing the velocity components as follows:

~

i Vo =V, - 4 (Pye Pp) (59)

where
1
{ (RU b1)dcd

L -
k 44 = Ry
Il + CylCy+ Cyt 7 4]

2
d = (RV b2)ncn
1 n R
Jalt + ColCypr Co

(59a)

Yy g

T 'n
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3
g - (Rw b3)e Co

e Rw

Jo[1 + G+ Cpt 7))

The modified pseudovelocities (D,Q,Q) defined above still contain part of the
pressure-gradient terms if the coordinate system is nonorthogonal (i.e., b% #
for i # j, see equation 57). These pressure-gradient terms can be evaluated
from the pressure field known at the previous time step or iteration without
losing any accuracy or generality. If we require the velocity field to
satisfy the equation of continuity (58), a simpler pressure equation can be
derived in terms of the modified pseudovelocities (U,V,W). Note that eighteen
velocity components are involved in equation (58) for each control volume.
However, due to the staggered grid system employed here, only six of these,
namely, Ugs Uu’ Vn’ VS, we, and ww, can be obtained directly from the govern-
ing equations (56). It is, therefore, necessary to approximate the remaining
twelve by interpolations. A simple linear interpolation is used here to
evaluate these from the velocity field known at the previous time step or
iteration, so that the continuity equation becomes

1 1 2 2 3 3
(b1U)d - (b1U)u+ (bzv)n- (b2V)5+ (b3w)e- (b3W)w+ Dy = 0 (60)
where

PR . 2. .2, 2 2
Dy = (bpV + bgW) y = (bV + boW) + (DU + b3N) - (bJU + bW

3 3 3 3 -
+ (DY + byV), - (63U + DoY) (60a)

is the mass source obtained from the velocity field at the previous time step

or sweep. An equation for pressure is then derived by substituting equations
(59) into (60), i.e.,

apPp = 34Pp + 3Py * AnPyc t AgPge t qePpc t QPyc - D (61)

where

-l
ag = (bq)y dy
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1
u- (b1)u du

[*}]
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2

qn = (bZ)n dn
a. = (b%) d (61a)
S 2’'s 7s
e = (bg)e de
.3
2w = (b3),, d,
ap = aq + 3, + 3, +a, +a+ag
and
- 1° - 27 2° 37 3°

A P -

The modified pseudovelocities (U, V, W) contain the neighboring nodal
values of velocity, source functions, and part of the pressure-gradient terms.
A1l of them can be evaluated from the information known at the previous time
step or iteration. Therefore, apart from the interpolations for Dy, the pres-
sure equation (61) is still an exact algebraic representation of the equation
of continuity (32). In this fashion, the pressure field can be obtained
directly from an estimated velocity field.

Although the guessed pressure field can be updated directly by equation
(61), in practice the new pressure field may produce a velocity field which
does not satisfy the equation of continuity. An iterative procedure is there-
fore required to correct this erroneous velocity field to achieve more rapid
convergence, Here, a velocity-correction formula, similar to that used in the
SIMPLE algorithm, is derived in terms of the pressure-corrections.

If we denote the imperfect velocity field resulting from an imperfect
pressure field p* by (U*,V*,W*), then the discretized momentum equations (59)

can be written as




* ~ ok

V=V d (e Pp ) (62)

* ~ ok

~ * *
Wo = W - de(pEC' pP)

In order to improve the guessed pressure field, such that (U*,V*,W*) will
eventually satisfy the eguation of continuity, one needs to know how the
velocity components respond to a change in the pressure field. Such a rela-
tion can be obtained by subtracting equation (62) from equation (59), i.e.,

* _ ~ ~ % ' [}
Ud - Ud - (Ud' Ud ) - dd(pD - pp)
* ~ ~ ok ] 1
Vn - Vn = (Vn" Vn ) - dn(pNC- pp) (63)

~ A

* * ] J
e o = (Hgm W) - de(pEC' Pk)

=
]

=
[}

where p' =p

p* is the pressure correction, and (U-U*), (V-V*) and (W-W*)
are the corresponding velocity corrections. If we require the velocity field
to satisfy the equation of continuity (60), an equation for the pressure
correction p' can be derived. However, due to the implicit nature of the
velocity corrections arising from the pseudovelocities, the resulting pressure
correction equation would involve the pressure corrections at all grid points.
It is not necessary to retain such a complicated formulation because both the
pressure- and velocity-corrections are zero in the final converged solution.
Since both the pressure- and velocity-corrections become trivial when the
solution converges, it is possible to omit that part of the velocity-correc-
tions, (U - U )s (V- V*) and (W - w*), which represents the indirect influ-
ence of velocity corrections. With this approximation, the velocity-correc-
tions are expressed explicitly in terms of the pressure-corrections as

* [ 1
Ud = Ud - dd(pD- pP)

* ' 1
V, =V, - d (pyc- Pp) (64)

=
1

* ] ]
e = W = dolpgem pp)
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By requiring the velocity field to satisfy the equation of continuity (58), a

pressure-correction equation is then obtained in the form

] ] ) 1 ) \ ] *
appp= adpD+ aupU+ anpNC+ aspsc+ aepEc+ awpwc- D (65)
with
* 1 * 1 * 2. * 2 % 3 * 3 %
D = (b]U )d - (b]u )U+ (b2V )n- (b2V )S+ (b3w )e‘ (b3w )w— D] (653)

where the coefficients ap, a4, etc., are as defined in equations (61a). Note
that the pressure-correction equation (65) is similar to the pressure eguation
(61). Although, unlike the pressure equation, the pressure-correction equa-
tion is not exact, the approximations made influence only the rate of conver-
gence but not the final converged solution.

The systems of algebraic equations formed by the assembly of the pressure
and pressure-correction equations, (61) and (65), respectively, are solved by
the tridiagonal-matrix algorithm with several 1ine-by-line internal iter-
ations. The finite-analytic coefficients ap, ay» etc., are updated in each
upstream to downstream global sweep, but remain the same during the internal
it~rations.

(d) Boundary Conditions

For the calculation of ship stern and wake flows considered in this
report, it is assumed that the ship is symmetric about a vertical centerplane
and the waterplane is regarded as a plane of symmetry. The appropriate bound-
ary conditions are then as follows (see Figure 2).

(1) Initial or Upstream Section (£ = 1)

The distribution of the velocity components (U,V,W) and the turbulence
parameters (k,e) are assumed known at an upstream transverse section either
from detailed boundary~layer caiculations or from simple correlations. Bound-
ary conditions for pressure and pressure-correction are not required in the

present staggered-giid arrangement since the pressure is implicitly determined




by the specification of the velocity components. Also, since thg ye}ocity

components are known, there are no corrections to be made, i.e. (U,V,W)u =
* k%

U,V W)y, = (U,V,w)u.

(2) Exit or Downstream Plane

The exit plane is usually located in the wake far downstream from the
stern, and the zero pressure gradient (pE= 0) condition is specified there.
Since axial diffusion in the far wake is negligible, the exit conditions for
the transport quantities ¢ = U,V,W,k,e in the momentum and turbulence-model
eauations are simply ¢gg= 0.

(3) Body Surface (n=1)

For laminar flows, the numerical solution is usually carried out upto the
solid surface using no-slip conditions, i.e., U=V=W=0 (see, for example, Chen
and Patel, 1987a). Strictly speaking, the same conditions should also be used
in turbulent flow calculations. Tnhis, however, will require a large number of
grid points to resolve the large gradients in the near-wall region and, more
importantly, an appropriate near-wall turbulence model to account for the
wall-proximity effects. In view cf the complexity involved in resolving the
near-wall flow, it is preferable to employ a simpler wall-function approach
which avoids the solution of the equations of motion and turbulence model in
the wall region. In the present study, the two-point wall-function approach
of Chen and Patel (1985a,b, 1988) is employed with necessary modifications to
determine the boundary conditions on a fictitious boundary (n=2) Tlocated in
the fully-turbulent logarithmic layer.

The present wall-function approach differs from the usual practice in two
respects. First, the effects of pressure gradients on the flow in the wall
region are taken into account by the use of a generalized law of the wall
given by Patel (1973), i.e.,

1/2
(1 +a_y)'7e o
9._=-l{]n[f"__ T 1201 + 4 +.1/2 .
y) 'S 1] +B +3.74 (¢6)
e T (e yh) V2 T p
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in which U, is the friction velocity defined by U, = /Tw/pUg s y+ =Re Uy
is the dimensionless distance measured in the direction normal to the surface,

Ap = Vp/ReUf is the dimensionless pressure gradient, AT is the dimensionless
shear-stress gradient which is approximated by 1/2 4 , q is the megnitude of
the velocity, x = 0.42 is the von Karman constant, and B = 5.45. Second, we g
ensure that at least two points (n = 2 and 3 in Figure 6) are located in the ;
logarithmic region and explicitly satisfy equation (66) at both. This avoids g
the need for a separate analysis for the flow between the wall and the first f
near-wall mesh point which is used in almost all previous applications of wall

o evnen, 3t

functions. For the present calculations, as in the earlier study of Chen and
Patel (1985a,b, 1988), equation (66) is employed to improve the prediction of

the wall shear stress and the associated boundary conditions in adverse pres-

A =
p

| —

sure gradients, while the usual logarithmic law of the wall (i.e., 8 =
0) is used in favorable pressure gradients.

e

In the present procedure, a value for UT is assumed and the boundary
conditions at n = 2 are determined from equation (66) and the assumptions of
local equilibrium for k and € , i.e.,

q
1 +,1/2

3 (1 +48_y,) "= 1

F =3 Onl ——2—1e2l(1 + a2 1 4B+ 3.7 (67a)
{ T T (1 +4_y,) "+ 1 P

2

) s (67b)

n T b

2y
( "

;
€, = E}E (67¢)

The numerical solution then provides the velocity atn = 3 and U_t is updated
4 by requiring this velocity also to satisfy equation (66), i.e., by solving

+,1/2
43 1, g (J+8y3) -1 172
== = = {In[3— #2001 +8,y3) "= 1]} +B+3.78 (68)
1 U, ~« A 0 +ATy;)1/2 £ ™3 P
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by a root-finding technique. Thus, an iterative procedure is used to satisfy
the wall boundary conditions in the case of turbulent flow, and to deter-

mine Uge Typically, five iterations are required to obtain satisfactory
convergence.

By anchoring the solution at two near-wall mesh points on the law of the
wall, the present wall-function approach removes much of the sensitivity of
the numerical solution to the location of the first mesh point which has been
observed in previous treatments. The procedure is quite straightforward for
two-dimensional and axisymmetric flows. For three-dimensional flows, however,
an additional assumption concerning the direction of the velocity vector is
required to determine the individual components (U,V,W) because the law of the
wall gives only the velocity magnitude. 1In Chen and Patel (1985a), it was
assumed that gqp is parallel to the wall and there is no rotation of the veloc-
ity vector between n=2 and n=3 in planes parallel to the surface. Although
the latter approximation resulted in some simplification in the application of
the wall-function boundary conditions, it led to the underprediction of the
secondary velocities in the stern and wake regions. The approach of Chen and
1 Patel (1985a) was, therefore, modified to account for the rotation of the
velocity vector in the wall layer.

& To use the law-of-the-wall formula (66), it is convenient to relate the
1 velocity components (U,V,W) in the governing equations to the physical compon-
ents (qg, qn, qc) along the body-fitted coordinates as follows:

g n z
i 9= (VW) =q L,+q L+q I, (69)

where Ter I, and I, are unit tangents in the body-fitted coordinates given by

T, = {X,.y V., r8,.)
Tg = == Xe» Tgs 8
3 Yo
1 !
4 Ty = 7= Uty Ty 1) (70)
922
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Q=3 (b]U + bzv + b3w)
—
n . 22 (b2 + b2V + bW) (72)
9 J 1 2 3

'3
£ - 233 (3 3 3

The geometric coefficients appearing in the above relations are evaluated at
the wall, n=1, so that the rotation of the velocity vector can be determined
relative to the surface coordinates. The projection of the velocity vector on
the surface, q* (1.e., without qn component) and the angle B between this and
the £-direction of the surface coordinates are given by

* z
Z .
_ qQ Siny
tan B = G z

q +q cosy
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whera v is the angle between T and T Alternatively, one can also evaluate
the components qE and q; when the magnitude and direction of the vector q are
specified, i.e.,

*

£ _gsin8
9 siny (74)
&

n

* g
q q cosB -q cosy

In the present procedure, we first impose the constraint that 9 is
parallel to the wall and therefore require q;= 0. However, instead of the no
rotation (i.e., 82 = 83) assumption imposed in Chen and Patel (1985a), the
effect of the velocity vector rotation in the near wall region is taken into
account by determining the direction of 9y using a quadratic extrapolation of
the angles 33, 84 and 85 of the velocity vectors atn =3, 4 and 5. The

angle 82 thus obtained is then used in equation (74) to calculate the velocity
components at n = 2 from:

g 4
9y = Qy COS 82 - Q, cos Y
q, sin 8
qg - Zsin . 2 (75)
n
q2=0

Note that Q = q; since it is assumed that gy is parallel to the wall, i.e. d;
= 0.

The 1iterative, two-point, wall-function approach for a three-dimensional
flow can be summarized as follows. With an assumed U , and therefore q, from
equation (67), equations (75) give the components A5 qg, qé, and equations
(71) give the components (UZ’VZ’NZ) which are required as the boundary condi-
tions for the numeri-al solution. In turn, this solution gives (U3,V3,W3) and
hence q3. A new value of UT is*obtained from equation (68), and equations
(72) and (76) are used to find q and 8 atn = 3, 4 and 5 for the quadratic

extrapolation to determine 82' Finally, qp is obtained from equation (67)
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using the new U, qg, qg, q; found from equations (75). These provide the
updated boundary conditions for the numerical solution and the procedure is
iterated to convergence.

It should also be noted that in evaluating the distance y norma! to the
wall, required in the law of the wall, it is necessary to determine the direc-
tion cosine between X, and nn. This is given by

2 2 2
bix. + bor_+ b,ré
cos a = .nﬂ - 1™n 2'n 3 'n (76)

I'n
2
V99509

in which all the geometric coefficients are again evaluated at the wail, i.e.,

atn =1,

(4) OQuter Boundary

In order to simulate the flow past a body in an unrestricted uniform
stream, the outer boundary of the solution domain is placed at a large dis-
tance from the body. The boundary conditions then become

(-3
~

9
- 5§-= 0, p=0 (77)
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The radial component of velocity (V) at the outer boundary is not specified
but is determined by the solution. The outer boundary can also be made to
coincide with the walls of a wind tunnel or towing tank, in which case the
boundary conditions are identical with those described in the previous sec-
tion.

While the calculations presented in this report are of the type described
above, we also recognize that the outer boundary can be made to coincide with
a surface in the inviscid flow provided appropriate match conditions are
provided. This viscous-inviscid matching approach is not pursued further.

(5} Symmetry Planes

On the centerplane, i.e., the ship keel and the wake centerplane,
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and on the undisturbed free surface, i.e., the waterplane, symmetry conditions

N=O, === 2= (78)

are enforced for the transport quantities.

(6) Initial Conditions (t = 0)

For the steady-flow calculations considered here, the initial conditions
for the transport quantities ¢ = /U,V,W,k,c) are taken directly from the
values known at the immediately upstream station during thc first sweep and
the pressure is assumed to be zero throughout the flow field. Although it is
possible to assume more realistic initial conditions and thus accelerate the
convergence of the solution, these rather crude initial conditions have been
used not only to simplify the use of the method but also to demonstrate its
versatility.

(e) The Overall Solution Algorithm

With the grid distributions employed for the large Reynolds numbers
considered here, the cell Reynolds number in the & - direction is quite large.
Q Consequently, in equations (55), the influence coefficient Cp is much smaller
than Cy. In other words, the streamwise diffusion is small compared to stream-
l wise convection and transverse diffusion. This enables us to adopt a partial-
ly-parabolic solution algorithm with minor modifications, rather than a fully
i iterative scheme, to solve the elliptic equations. As noted earlier, the pre-
k sent twelve-point finite-analytic formula contains only one additional influ-
; ence coefficient Cp which is not present in a partially-parabolic formula-

tions. If ¢D is evaluated using the value known from previous sweep or time
step, then the partially-parabolic solution algori.chm of Chen and Patel
(1985a) can be employed also to solve the elliptic equations. Thus, the
] influence of streamwise diffusion in the fully-elliptic equations is conven-

jently taken into account without significantly increasing computer storage or
J computatior. time.

For transient problems, where the initial and boundary conditions are
] properly specified, the overall numerical solution procedure may be summarized
as follows:
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1. Construct the body-fitted coordinate system for the given body shape
and solution domain, and calculate the geometric coefficients
b%, 913, J, etc. from equations (27) to (31).

2. Specify the initial conditions for the velocity and turbulence fields.
Set p = 0 everywhere initially.

3. Specify the velocity and turbulence profiles at the first stationg =1
(these may be time dependent).

4, Calculate the finite-anaiytic coefficients for momentum, pressure, and
pressure-correcticn equations at the downstream station from equations
{%?) and (61), respectively. CStore only the finite-analytic coeffici-

arts a4, &, and a5 7o~ the pressure equation.

Ti
Sojve the momenrtim equation: ~ased on the updated-pressure field to
oukain the starred velccity fieid (U*, V*, Wx). This system of alge-

braic equations is solved by a tridiagonal matrix algorithm.

I3
.

6. Calculate the mass source D*, and solve the pressure correction equa-
tion (65) by tridiagonal matrix algorithm.

7. Correct the velocity field using the velocity-correction formulae (64),

| but do not correct the pressure field.

Py

8. Update wall-function boundary conditions using the newly-obtained
velocity field and repeat steps (5) tc (7) for several internal itera-

& tions.
~ 9. Calculate the pseudovelocities {g, V, W) in terms of the velocity field
\ from equation (59). Store only D for later use.

‘ 10. Solve equations (55) for turbulence quantities (¢ = k,e) by tridi-
agonal-matrix algorithm.

11. March to the next downstream station and repeat steps (3) to (9).

12. After reaching the last downstream station, solve the pressure equation
(61) by tridiagnonal matrix algorithm. Several iterations from down-
stream to upstream are employed to update the three-dimensional ellip-
tic pressure field.

-~

3

13. Repeat steps (3) to (11) for several sweeps until both the pressure and
% velocity fields have converged within a specified tolerance.
14. Return to step (2) for thc next time step.
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15. Stop if the steady-state solution is achieved, or if time exceeds the
maximum time period assigned. For steady-flow calculations, one may
relax the convergence criterion in step (12) and use a larger time
increment for the intermediate solutions.

In the present study, only one sweep was used in step (12) for each time
step. Also, as noted earlier, instead of specifying the initial conditions
for velocity and turbulence profiles everywhere at t = 0, only the profiles at
the first station £ = 1 are specified, and the downstream profiles are taken
from the immediately upstream station (i.e., ¢p = ¢U at t = 0) during the
first global sweep.

IV. SOME NUMERICAL ASPECTS OF THE METHOD

It was noted in Section II that many components of the present calcula-
tion method have been tested by applying it to study the flow past geometri-
cally simpler bodies. In this report, therefore, we will be specifically
concerned with the flow around ship hulls.

Before discussing the selection of specific hull forms as test cases and
presenting the corresponding results, it is useful to evaluate and document
certain numerical aspects of the method. These are discussed in relation to
the calculations performed for one of the test cases, namely the SSPA Liner,
the physical aspects of which will be considered in the next section. For the
purposes of the present section it is simply a representative hull form which
is used to examine the convergence properties of the algorithms, dependence of
the solutions on the grid and size of the numerical solution domain, and the
computer times required to obtain acceptably accurate solutions.

IV.1 CONVERGENCE

Two important measures of the performance of an iterative numerical
method are the number of ijterations required to obtain a converged solution
and the influence of the grid. Here, we shall examine first the convergence
history of several representative quantities for a typical calculation with a
(50 x 30 x 15) grid in the (x,r,8) directions. In this particular applica-
tion, as well as in all others, the calculations were performed for 160 time
steps (or sweeps) to assure full convergence of the solutions although much

fewer sweeps are actually required to obtain an acceptable solution.
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Figure 7 shows the convergence of the distributions of pressure, Cp (=
2p), and friction velocity U_, along the keel and waterline coordinates and
their extensions into the wake, and wake centerline velocity U.. It is seen

that all these quantities converge monotonically in Tless than 60 time steps or
global sweeps. Recall that the solutions were started with a consiant ambient
pressure (p=0) throughout the solution domain. The calculated pressure and
velocity fields clearly capture all the important features of the final con-
verged solutions in less than 20 sweeps. This is particularly encouraging
because it el®ninates the need for generating an initial pressure field from a
potential-flow calculation.

Othe~ tests of convergence of the solutions made on the mass source terms
appearing in the pressure and pressure-correction equations also showed mono-
tonic convergence similar to that depicted for the flow parameters shown in
the above figures.

IV.2 GRID DEPENDENCE

Calculations were performed with four different (x,r,8) grids in the
solution domain: {0.3 < x < 4.5, rg <r< 1.0, 0 <8 < n/2}, to examine the
sensitivity of the numerical solutions to grid refinement. Some information
on these calculations is given in Table 1, and typical views of the four grids
are shown in Figure 8. In the stern and near wake regions, the finest grid,
(74 x 30 x 21), has nearly twice as many nodes in each direction compared with

he coarsest one, (41 x 15 x 12). The coarsest grid calculation converged in
only 15 iterations and required only about 40 cpu seconds on the CRAY
XMP/48. On the other hand, the finest grid required about 30 cpu minutes to
achieve the same level of convergence. This is due to the significant
increase of the number of grid nodes as well as the number of global sweeps
(110) needed for convergence.

49

P AR SN O



Table 1. Summary of Grid Dependence Tests

CASE ==> I I1 I v

Grid points

in x-direction 41 74 50 74

in r-direction 15 15 30 30

in 8-direction 12 12 15 21
Total nodes 7,380 13,320 22,500 46,620
Time Step, T 1.0 0.5 0.3 0.5
Memory, 10° 0.32 0.5 0.84 1.63
cpu, sec/iteration 2.6 5.3 6.0 16.6
Iterations for 15 60 55 110
convergence
Total cpu (secs) 40 320 330 1830

Figure 9 shows the results obtained with the four grid arrangements with
regard to the flow parameters considered before. It is quite evident that the
three finer grids yield nearly identical results. On the other hand, the
solution with the coarsest grid shows some departure from the other three.
This is presumably due to an inadequate numerical resolution and less accurate
specifications of boundary conditions at the hull surface and along the wake
centerline. Nevertheless, it 1is quite encouraging to note that even the
coarsest grid calculation is able to capture many of the important features of
the flow which are evident from the data discussed later. Consequently, the
coarse grid solutions may be used to guide the selection of principal param-
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eters in a design process. Refined calculations can then be made in regions

where significant variations in body geometry or flow features occur.

IV.3 SOLUTION DOMAIN

In some earlier studies of well known two-dimensional, axisymmetric, and
simple three-dimensional bodies, it was found that, with the simple uniform
stream boundary conditions employed here the numerical solutions were quite
sensitive to the size of the solution domain. The most critical quantity to
be examined in this regard is the pressure distri.ution since its influence
penetrates much farther into the inviscid-flow region compared to the velocity
field. In order to properly capture the entire zone of viscous-inviscid
interaction, the outer boundary should be placed at a distance sufficiently
far away from the body such that the uniform flow and zero pressure conditions
are indeed appropriate. Similarly, the downstream boundary must be located in
the far wake where upstream propagation of pressure becomes negligible.

For the present applications to ship stern and wake flows, we have varied
the location of the outer and downstream boundaries over a wide range to
examine the influence of domain size on the solutions. Calculations were
performed for four different combinations of downstream and outer boundaries,
namely

0.3 < x <23.1, rg <r <2.00 witha (57 x 35 x 15) grid,
0.3 <x<4.53, rg <r<0.95 with a (50 x 31 x 15) grid,
0.3 < x <1.95, rg <r <0.47 witha (45 x 27 x 15) grid,
0.3 <x<1.34, rg <r<0.22 witha (41 x 22 x 15) grid.

The grids for the three smaller domains were obtained by simply deletirg an
appropriate number of outer and downstream grid lines from the grid generated
for the largest solution domain. Therefore, the four solutions correspond to
essentially the same grid distributions. It is seen from Figure 10 that the

solutions with the two larger domains are essentially the same. It is also
clear that the smallest domain is too small to correctly predict the pressure
distribution over the hull. These calculations suggest that domain dependency
can be eliminated by choosing an outer boundary which is farther than about a
half ship length from the axis, and the downstream boundary at a similar
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distance from the stern. For all remaining calculations we have chosen the
domain 0.3 < x < 4.5, rg < r < 1.0, which is more than adequate to capture

the viscous-inviscid interaction.

IV.4 COMPUTING TIMES

The initial development of the present computer code and some preliminary
calculations were performed on a Prime 9950 minicomputer of the University of
Iowa. Quite encouraging results were obtained even though the finest grid
that could be tested was just (30 x 19 x 14). However, t also became clear
that a computer with greater speed and larger memory was needed in order to
realize the full potential of the method. Therefore, subsequent studies in
grid refinement, domain dependence, and convergence were performed on the CRAY
XMP/24 supercomputer of the Naval Research Laboratory (NRL) and the CRAY
XMP/48 machine of the National Center for Supercomputing Applications (NCSA)
at the University of I1linois.

In order to fully utilize the vectorization capabilities of the CRAY
supercomputers, several major revisions had to be made in the original code.
These included vectorization of the tridiagonal algorithm and the subroutines
for the calculation of the finite-analytic coefficients. These code optimiza-
tions resulted in a 70-percent saving in cpu time compared to the correspond-
ing scalar calculations. The optimized code on the CRAY supercomputer runs
about 150 times faster than the original one on a Prime 9950. A typical ship
stern and wake flow calculation with a (50 x 30 x 15) grid now takes about 5-
10 minutes of cpu time to obtain fully converged solutions. It is estimated
that the same calculations would require almost 15 hours of cpu time on the
Prime 9950.

V. TEST CASES AND COMPARISONS WITH EXPERIMENTS

One of the major problems of assessing the performance of a complex
computational method which is composed of many numerical and physical models
and approximations is to find sufficiently detailed and varied test cases for
which reliable information is available from other, independent sources. For
turbulent flows, this has invariably involved recourse to experimental infor-
mation. Ideally, it is desirable to have available experimental data sets
which are (a) reliable with respect to accuracy, (b) complete enough to pro-
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vide the necessary initial and boundary conditions required to carry out a
meaningful calculation, and (cj contain sufficient additional information
which could be used to evaluate the performance of the calculation method and
its components. These requirements were brought sharply into focus at the
1980-81 Stanford Conferences on Complex Turbulent Shear Flows &t which
attempts were made to identify such data sets for the evaluation of turbulence
models. In fact, it became quite evident at that time that few such data sets
existed. This was particularly the case for three-dimensional flows.

The situation with regard to the present topic of ship stern and wake
flow is not very different. 1In spite of the numerous experimental studies
which were mentioned in Section II[.2, there is not a single data set which
satisfies all of the requirements noted above. However, this does not niean
that the available information cannot be used to provide guidance in the
development and evaluation of calculation methods. If the limitations are
recognized, the data can still be used to evaluate certain aspects of the
overall computation procedure. This also implies that it is desirable to make
comparisons with many sets of data, obtained on different hulls, by different
techniques, and in different facilities. In view of this, we have selected
five cases for which reasonably extensive data are available. In what fol-
lows, we shall briefly present the rational for selecting each of them.

The Wigley parabolic hull was selected as the first test case because it
has been used in many previous studies of wave and viscous resistance in ship
hydrodynamics and because it has a rather simple stern shape. The Tlatter
feature is attractive in the evaluation of calculation methods with respect to
the prediction of the very near wake and the subsequent evolution of the
three-dimensional wake.

As noted earlier, the Wigley hull was one of four siapes selected for the
ITTC Cooperative Experimental Program which sought to establish a comprehen-
sive data base, and one of two on which extensive measurements were
reported. However, as noted in ITTC (1987), many of these experiments were
restricted only to force components. Among the experiments concerned with the
details of the viscous flow over the stern and in the wake, the most complete
are those of Sarda (1986) on a double model in a wind tunnel. In fact, these
experiments were carried out specifically to study the stern and wake flow,
and document the evolution of the wake from the thin boundary layer on the
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hull. The measurements included surface pressure distribution, mean velocity
field, and all components of the Reynolds-stress tensor. The comparisons

between these experiments and the present computations are greatly facilitated
by the fact that the data were collected in a Cartesian coordinate system and
are available on tape.

The second test case is the SSPA 720 Cargo Liner. The boundary layer on
a double model of this hull form was measured in a wind tunnel by Larsson
(1974). These are among the most well documented mean-flow measurements in
three-dimensional boundary layers, and were carefully examined and recompiled
in a convenient form in preparation for the SSPA-ITTC Workshop on Ship Bound-
ary lLayers (Larsson, 1981). These data were supplemented by corresponding
turbulence measurements by Lofdahl (1982) and Lofdahl and Larsson (1984}.
Because these experiments were conducted to study the hull boundary layer,
rather than the stern and wake flow, the measurements were made in a coordin-
ate system suitable for three-dimensional boundary layers. As discussed by
Chen and Patel (1985b), this makes it difficult to compare the data with
calculations which use generalized coordinates because the errors involved in
the interpolations are not insignificant. Nevertheless, the data of Larsson
and iofdahl are most useful in scrutinizing some critical aspects of the
calculation method, and also in gaging the advances that have been made over
the methods which led to the results shown in Figure 1(a).

The HSVA Tanker is the third test case. Mean flow measurements in the
boundary layer on a double model of this hull were first made in a wind tunnel
by Hoffman (1976) and other measurements on the same model have been reported
since then. For example, quite detailed mean-velocity field data were
obtained by Wieghardt and Kux (1980) and Wieghardt (1982, 1983), and some
turbulence measurements were reported by Knaack (1984), and Knaack, Kux and
Wieghardt (1985). Recent communications with these authors dindicate that
other experiments on this hull are still continuing.

For the comparisons made in this report, we have used the tabulated stern
and wake flow data supplied on tape by Dr. Kux. Comparison of the present
calculations with these data was greatly facilitated by the fact that the
calculated results could be readily interpolated into the Cartesian coordin-
ates in which the measurements were made. The earlier boundary-layer measure-
ments of Hoffman were used only as a guide to determine appropriate initial




conditions. Recall that these measurements had led to the selection of this
hull as the second test case at the SSPA-ITTC Workshop. Comparison of the
present results with those presented at the Workshop (Figure 1b) would again
indicate the progress that has been made in the prediction of stern and wake
flows. Futhermore, the HSVA Tanker is of fuller form than the SSPA hull and
therefore provides a more severe test of the calculation method.

The next test case is somewhat similar to the previous one insofar as it
also involves a full form hull and mean-flow measurements on a double model in
a wind tunnel. This is the SR107 Ore Carrier which has been the subject of
many collaborative experiments in Japan (see, for example, Nagamatsu, 1981;
Okajima, Toda, and Suzuki, 1985). Although these data are restricted to the
stern and wake region, and therefore there is some uncertainty concerning the
proper initial conditions, they were selected because they enable the eval-
uation of the calculation method against somewhat similar data sets obtained
in quite different facilities. Here again, the use of Cartesian coordinates
in the experiments made it convenient to carry out detailed comparisons.

The fifth and final case considered is the well known Series 60, C, =
0.60 hull. This is the second hull for which the ITTC Cooperative Experimen-
tal Program led to the collection of extensive towing-tank data. As in the
case of the Wigley hull, however, most of these experiments were concerned
with force components and none documented the stern and wake flow in as much
detail as that on the other hulls mentioned above. Fortunately, quite exten-
sive data for this hull have recently become available from an independent
study.

Here, we shall use the data obtained in the course of a joint research
program on propeller-hull interaction between O0Osaka University and the
University of Iowa. These experiments included measurements with and without
an operating propeller and will be described in a forthcoming report by Toda,
et al., (1988). For the present purposes, we will consider only the measure-
ments without the propeller. These experiments on the Series 60 are particu-
larly suitable for the present study for two reasons. First, they were
designed specifically with the goal of obtaining data for the validation of
modern computational methods, and therefore the measurement coordinates and
locations were selected to facilitate direct comparisons with predictions.
Secondly, the measurements were made in a towing tank on a large model at a
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relatively low Froude number, and therefore comparisons with double-body
calculations give some information on the influence of the free surface in the
absence of a strong wave system.

Taken together, the five hull forms selected here provide a rather com-
prehensive set of test cases for the validation of the computational method.
Included are simple and complex geometries with different bow and stern
shapes, and different fullness, data obtained on double models in different
wind tunnels and those obtained with a conventional model in a towing tank,
and finally, measurements with instrumentation of varying degrees of sophisti-
cation. In the following sections, we shall point out further features of
each of the data sets which have a bearing on the evaluaticn of the perfor-
mance of calculation procedures, in general, and the present method, in parti-
cular. In the calculations presented below, all attempts have been made to
carefully match the conditions prevailing in the experiment but lack of some
critical information on the experiment, on the one hand, and limitations of
the calculation method, on the other, need to be borne ir mind in drawing
general conclusions from the comparisons.

Before presenting the res:'ts for the individual cases, it is useful to
first describe some features that are common to all of them. Among these are
the notation used, and the procedure for the generation of 1initial and bound-
ary conditions.

A1l coordinates and geometrical parameters have been rendered dimension-
less using the ship length L as the characteristic scale, the coordinate x

being measured from the bow, rather than from midships. The velocity compon-
ents are nondimensionalized by a constant reference velocity, Ugs which is

either the velocity of the model or the velocity in the tunnel working sec-
tion. Finally, pressures and stresses are made dimensionless using the same
reference velocity, and ambient density and viscosity. Al1l other quantities
will be defined when they are first introduced. It should also be noted that
the dimensionless coordinates (x,y,z) are used interchangeably with upper case
notations (X,Y,Z) in the figures.

The initial and boundary conditions required by the present method were
discussed in general terms in Section II11.2 (d). To obtain solutions for a
particular shape, it is necessary to prescibe the conditions at the upstream
and outer surfaces of the solution domain. Here, we have employed uniform-
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stream conditions at the outer boundary (i.e., U =1, W =0, and p = 0) and,
therefore, the solutiuns correspond to the flow around double bodies in an
unrestricted stream. In other words, wind-tunnel or towing-tank blockage
effects are not taken into account.

At the upstream section, x = 0.3, it is necessary to prescribe the dis-
tributions of (U,V,W,k,e) at all grid points, within the thin boundary layer
as well as in the inviscid flow outside. As explained earlier, it is not
necessary to prescribe the pressure because it is determined implicitly from
the equation of continuity. The specification of the five quantities, for
which there are corresponding transport equations, requires some care because
they must properly reflect the upstream history of the flow. In all cases we
prescribe a girthwise distribution of the boundary-layer thickness &, the
friction coefficient Cf = 2 UTZ, and the velocity at the edge of the boundary
layer UG. These are estimated from either previous boundary-layer and invis-
cid-flow calculations, or guessed and then adjusted to obtain agreement with
data at the first measurement station downstream from the initial section.
These quantities are used, together with the law of the wall and the law of
the wake, to generate the profiles of the longitudinal velocity U inside the
boundary layer, and the reduction from U5 to unity in the inviscid flow is
assumed to take place as r-2. In the first instance, V and W components are
set to zero, and k and € are obtained from correlations for a flat-plate
boundary layer. As the solution progresses, however, the values of V, W, k
and € are updated by scaling those calculated at the first downstream sec-
tion. This process is continued only for the first 20 global sweeps, and then
the initial profiles are fixed. This rather intricate procedure for the
generation of the initial conditions does not affect the principal quantity,
i.e., the axial velocity profile. However, it ensures that the subsequent
solution is carried out with initial profiles of transverse velocity compon-
ents and turbulence parameters which are compatible with the governing equa-
tions. The procedure is quite automatic and results in solutions which are
not sensitive to initial conditions.
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V.1 WIGLEY PARABOLIC HULL

(a) Available Experimental Information

The experiments of Sarda {(1986) were carried out on a 10 ft (3.048 m)
long double model suspended by cables in a 5 ft (1.52 m) octagonal-section,
return-circuit, closed wind tunnel in which the freestream turbulence level
was less than 0.5 percent. The measurements were made at a Reynolds number Re
= UOL/V = 4,5 x 106. Although measurements could be made only upto a distance
of 8 ft (2.44 m, or 0.8 L) downstream of the stern, these experiments document
the wake considerably farther than the other experiments discussed
subsequently. The boundary layer on the hull was tripped by means of studs of
standard design at x = 0.05.

The available data include the pressure distribution on the hull measured
by surface pressure taps, mean-velocity components measured by a five-hole
pitot probe, and components of the mean velocity, the Reynolds-stress tensor,
and triple products of fluctuating velocity components measured by means of a
three-sensor hotwire probe. The velocity and turbulence measurements were
made at several longitudinal sections in the range 0.5 < x < 1.8, i.e., from
midships to 0.8 ship lengths downstream of the stewn.

(b) Body Shape and Numerical Grid

The coordinates of the Wigley hull are given by
2V/8 = [1 - (2%/L - 121 [1 - 22/0)?) (79)

where (X,Y,Z) are Cartesian coordinates with the origin at the bow, and the
ship length (L): beam (B): draft (D) ratio is 10:1:0.625.

The solulion domain extends from a section 0.3 ship lengths from the bow
to 3.524 ship lengths downstream of the stern, and from the hull to a cylin-
drical surface located one ship length from the ship longitudinal axis. In
terms of the coordinate variables, the solution domain is defined by 0.3 < x
<4.524, r. <r < 1.0 . This domain is covered by 50 x 30 x 15 grid points in
the axial, radial, and circumferential directions, respectively, giving a
total of 22,500 grid nodes.
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Some views of the numerically-generated grid are shown in Figure 11. The
grid-control functions f' used to obtain this grid were given in equation

(41). The parameters appearing therein are as follows:

0.6 if A<D
C =

0.2 ifA>0
d = 0.2

The following are some of the noteworthy features of this grid. First, the
coordinate surfacen = 2, just off the hull in the radial direction, is
arranged in such a way that at all locations it 1ies in the range 90 < y+ <
250, y* being the normal distance from the huli. Recall that such a con-
straint is necessary for the wall-functions approach to be applicable. Other
investigators who also employ wall functions have placed the first near-wall
grid surface much closer to the hull than the one used here. While such
solutions can be also obtained with the present method, we believe that they
cannot be trusted because the underlying assumptions of the law of the wall
and energy equilibrium are no longer valid. In cther words, grids finer than
the ones used here can be justified only if the wall-function approach is
abandoned in favor of direct solutions of the governing equations all the way
upto the wall. Secondly, we note that the grid is concentrated near the stern
and in the near-wake to resolve the large gradients which occur at the trail-
ing edge. Third, the grid spacing is increased very rapidly in the radial and
longitudinal directions. In fact, the final step size in the radial and axial
directions is of the order of 0.2 and 0.8, respectively. The use of such
large steps while maintaining solution accuracy is made possible by the fin-
ite-analytic discretization of the transport equations.

(c) Description of Results and Comparisons with Experiments

Here, as in all subsequent cases, we shall first examine the distribu-
tions of pressure and wall shear stress on the hull surface, and then the de-
tails of the flow field. Figure 12 shows the distribution of pressure cceffi-
cient Cp (=2p) and friction velocity U, along the keel and the waterline
planes of symmetry. Girthwise distributions of Cp and the magnitude of the
friction coefficient C¢ (= ZUE) at a few transverse sections are shown in

Figure 13. The data of Sarda (1986) and some unpublished results from Watmuff
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and Joubert (1985) are also shown in Figures 12 and 13. In the case of
Watmuff and Joubert the pressure datum was adjusted to match the potential
flow value at midships. The direction of the wall shear stress can be seen
from the 1imiting or wall streamlines plotted in Figure 14. This last figure
was obtained from the calculated wall shear stress vectors over the hull,
starting from the initial section at x = 0.3.

In Figure 12 the experimental data are restricted to the waterline
because there are no pressure taps along the sharp keel. The potential-flow
pressure distributions were obtained at the David Taylor Research Center using
the XYZ computer program. It is seen that the present calculations are in
good agreement with the data of Watmuff and Joubert, but both are considerably
higher than the measurements of Sarda near the stern, x > 0.94. The discrep-
ancy between the two sets of measurements is somewhat surprising because both
experiments were performed under similar conditions. Although the reason for
the observed differences is not entirely clear, Sarda noted that the geometry
of his model was not precisely the same as that of the mathematical form, his
model being thicker in the bow and stern regions. Potential-flow calculations
for the actual experimental shape is obviously needed to determine if the
differences 1in geometry are indeed responsible for the differences in the
data. Despite these uncertainties, however, we note that the present results
are in good agreement with the potential-flow solutions over much of the hull
where the boundary layer is thin. The level of disagreement between the data
of Sarda and the calculations over the midbody is also consistent with the
expected tunnel-blockage effect in the experiments. In the stern region, the
calculated pressure gradients are smaller than those in potential flow as is
to be expected from the displacement effect of the viscous flow.

The calculated friction velocities alon; the waterline follow the trends
shown by the data, which were obtained from Clauser plots of measured velocity
profiles, although the measurements are somewhat lower than the predicted
values. It is seen that the friction velocity decreases along the waterline
due to the continuous thickening of the boundary layer. On the other hand,
the calculated friction velocity increases along the keel in spite of the
adverse pressure gradient that is present. This is due to a reduction in the
boundary layer thickness produced by flow divergence out of the keel plane.
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From Figure 13 it is seen that the calculated girthwise distributions of
pressure are in agreement with the two sets of measurements upto x = 0.95.
The marked disagreement between the calculations and the data of Watmuff and
Joubert at the next section, x = 0.962, is most 1iikely due to interference
from the model support in the experiment. Further downstream, the calcula-
tions agree with the data of Watmuff and Joubert but, as noted already, 1lie
above the measurements of Sarda.

The calculations and experiments indicate that in the region 0.5 < x <
0.9 the pressure decreases in the girthwise direction from the keel towards
the waterline. This is in agreement with potential-flow theory, as would be
expected in regions where the boundary layer is thin. Although the girthwise
gradient is small, it is responsible for the secondary motion from the keel
towards the waterline. Around x = 0.8, the pressure shows an increase towards
the waterline in a region whose girthwise extent increases downstream. Even-
tually, for x > 0.9, there 1is an increase in pressure all the way from the
keel to the waterline. This reversal of trend from the predictions of invis-
cid theory 1is associated with the changes in the girthwise distribution of
boundary layer thickness over the stern.

The calculated and measured wall shear-stress coefficients shown 1in
Figure 13 indicate similar general trends but there exist systematic differ-
ences, particularly at the most upstream station, where the calculated values
are higher than the measurements. Although somewhat better agreement could be
secured in this respect by adjustments in the initial conditions at x = 0.3,
this was not pursued further partly because the agreement between the calcula-
tions and the data improves downstream (x > 0.92). The decrease n wall shear
stress magnitude from the keel towards the waterline is consistent with the
thinning of the boundary layer along the keel and a thickening along the
waterline brought about by the crossflow. The general direction of the cross-
flow and the changes in the direction of the wall shear stress are best seen
from the wall streamlines of Figure 14.

An overview of the flow pattern is provided by Figure 15 which shows the
velocity vectors projected onto the horizontal waterplane and the vertical
centerplane. These plots were constructed by interpolation of the numerical
results. Contours of the axial velocity (U) and velocity vectors projected
into transverse sections (V and W components) are shown in Figures 16(a) and




(b) for some representative sections at midships, over the stern, in the near
wake, and farther downstream. Here, the transverse velocity plots also indi-
cate the grid distribution. We recall that all of these figures show informa-
tion close to the hull although the total solution domain is much larger. The
measurements of Sarda are shown in Figures 17 {(a) and (b) for comparison.

Among the major features evident from Figures 15 and 16 are the follow-
ing. In the longitudinal directien, the boundary layer grows rapidly along
the waterline but remains thin along the keel. This is due to the secondary
motion which is directed from the keel towards the waterline, in the viscous
flow as well as in the outer inviscid flow. The transport of the boundary
Tayer fluid towards the waterline is also indicated by the convergence of the
wall streamlines in Figure 14. The direction of the transverse motion is also
consistent with that expected from considerations of the pressure gradients
associated with an inviscid flow. From potential-flow pressure distribution
on the front half of the hull we would expect the secondary flow in the bound-
ary layer upto midships and perhaps for some distance downstream to be
directed towards the keel, resulting in a thicker boundary layer at the
keel. These features were observed in the measurements of Sarda at x = 0.5
{see Figure 17) and also in his boundary-layer calculations. The present
calculations at x = 0.5 indicate that although a thicker boundary layer is
observed at the keel at thiis section, the secondary motion is directed towards
the keel only in a small layer close to the keel. This difference, although
small, is most likely due to the use of simple flat-plate profiles for initial
conditions (at x = 0.3) in the present calculation. While the use of a bound-
ary-layer calculation to obtain the initial conditions would reduce this
difference, additional difficulties arise in handling the sharp keel within
the framework of boundary-layer theory.

Examination of the velocity field over the stern and in the near wake
shows no dramatic changes in the flow structure, 1In particular, there is no
evidence of a stern vortex, although there is obviously longitudinal vorticity
associated with the transverse velocity components. The transverse components
decay rather rapidlv in the wake. The calculations predict a quite rapid
recovery of the wake to what appears to be en aimost axisymmetric state by x =
1.5, a half ship length from the stern. This is at variance with the measure-
ments shown in Figure 17 which indicate a rather slow development of the wake.

62




The calculated distributions of the velocity components (U,V,W), pressure

(p), and turbulent kinetic energy (k) are compared with the measurements of
Sarda (1986) in Figure 18 at several sections in the range 0.5 < x < 1.5. The
calculated results were interpolated to determine the variation of the various
quantities in the horizontal (y) direction at different depths (z = constant),
z = 0 being the waterplane. Note that the horizontal axis in these figures is
y*, the distance from the hull surface. For profiles below the keel (z <
-0.0625) and in the wake (x > 1), of course, y* = y. The data obtained with a
five-hole pitot and a triple-sensor hotwire are included to show the exper-
imental uncertainty, particularly with respect to the components V and W. In
the case of pressure, the original data which were obtained with the pitot
probe were referenced to a pressure in the wind tunnel some distance upstream
of the model. The pressure measured in the wake at x = 1.5 was nearly uniform
but higher than the reference pressure. The calculations, on the other hand,
predicted almost zero pressure relative to the pressure in the uniform
stream. In view of this, a constant (= -0.06) reference-pressure correction
has been added to the data to obtain the so-called corrected pressures shown
in Figure 18. In other words, the calculated and measured pressures have been
matched in the wake at x = 1.5. Such a constant correction obviously does not
alter the pressure gradients and therefore enables us to compare the calcu-
lated and measured gradients. On the other hand, it is not a correction for
tunnel blockage although blockage may be responsible for a part of the
observed pressure difference. A more likely possibility is an error in probe
calibration. Figure 18 contains a great deal of information regarding the
details of the flow and on the performance of the calculation method. To aid
the understanding of the many issues involv.d, we shall discuss the results
starting with those at midships and progressing downstream into the wake.

The results &' midships (Figure 18a) indicate that the boundary layer is
thin and the girthwise variation of its thickness is captured adequately by
the simple initial conditions prescribed at x = 0.3. There are differences in
the shapes of the axial velocity profiles at some depths, and in the shapes
and magnitudes of the transverse components particularly close to the wall.
In spite of the differences between the pitot and hotwire data, it is clear
that the generally negative values of V and W measured in the experiments are
not captured by the calculations. We have already commented on this differ-
ence. It appears that further refinements in the initial conditions could
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have been made to secure better agreement at this first measurement section.
In spite of the differences in the mean velocity field, we see that the cal-
culated pressure is in reasonable agreement with the corrected data. The
small departures between the two close to the wall are believed to be due to
probe interference. Finally, the profiles of turbulent kinetic energy are
also matched rather well except at the keel (z = -0.0625).

The flow over the stern is described by the results at four sections, x =
0.90, 0.95. 0.967 and 0.983. Here, the profiles of the axial velocity indi-
cate that the girthwise distribution of the thickness of the viscous region is
predicted rather well, including the near-disappearance of the boundary layer
at the keel. There is, however, a tendency for the calculated velocities to
be larger close to the wall. This is most likely associated with the use of
the wall functions. The correction for pressure gradients in the law of the
wall are presumably not sufficient to c-~mpletely describe the wall layer.
With respect to the transverse components of velocity, the calculations pre-
dict the general trends and magnitudes rather well. Unfortunately the scatter
in the data and the differences between the pitot and hotwire results preclude
more definitive conclusions. The predicted distributions of pressure are in
good agreement with the corrected data with the possible exception of a short
fetch close to the stern. The profiles of turbulent kinetic energy are also
predicted quite well except very close to the wall where the measured values
are generally larger. This feature is presumaby related to the differences in
the axial velocity profiles noted above and may again be due to the inadequacy
of the wall functions.

The results at the next three stations, namely, x = 1.002, 1.017 and
1.050, illustrate the rapid changes that take place in the neighborhood of the
centerplane (y* = y = 0) of the extreme near wake. First, we note that the
calculated results dc not extend to the centerplane because of the way in
which the plane-of-symmetry boundary conditions are enforced. However, this
is not the principal reason for the quite major differences between the calcu-
lations and measurements. Previous calculations for a flat plate (Patel and
Chen, 1987) and for bodies of revolution (Chen and Patel,1987b, 1988) indicate
similar tendencies, i.e., an overestimatijon of the velocity and an underesti-
mation of the turbulent kinetic energy along the wake centerline. This is
attributed to the fact that the flow in the sublayer and the blending zone of
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the upstream boundary layer has not been considered as a result of the appli-
cation of wall functions in the tubulence model. The lower measured veloci-
ties and higher measured turbulence are therefore associated with the physics
of the flow in the near-wall region. The secondary velocity components also

indicate systematic differences, presumably due to the same reason. In spite
of the discrepancy in the inner portion of the very near wake, it is encourag-
ing to note that the flow in the outer part continues to be predicted satis-
factorily in all respects.

The subsequent evolution of the wake 1is depicted by the results at the
next four sections, x = 1.1, 1.2, 1.3 and 1.5. It is clear that the differ-
ences which arose in the inner part of the wake at the stern persist for quite
large distances, particulariy with regard to the profiles of axiai velocity
and turbulent kinetic energy. The scatter in the data is such that definitive
conclusions concerning the secondary motion cannot be reached but there is
some evidence to suggest that the calculations predict a more rapid decay of
the secondary flow than is observed in the data. This was also seen from
comparisons of Figures 16 and 17. Finally, we observe that the pressure at
these distances is nearly uniform, and the comparison between the data and the
calculations for x = 1.5 show that a constant correction on the measured
pressures is justified.

(d) Summary

Insofar as the flow over the hull and the stern is concerned, it is clear
that the present calculations predict all essential features of the mean flow
with reasonable accuracy. No attempt has been made here to compare the pre-
sent results with those obtained earlier by solutions of the boundary-layer
equations (e.g. by Sarda, 1986), but it is expected that the differences may
be significant only in the stern region because there is only a weak viscous-
inviscid interaction on this rather slender hull. With regard to the turbu-
lence, we have chosen to examine only the turbulent kinetic energy, a quantity
which can be measured with a greater degree of precision than the individual
Reynolds-stress components, and which directly enters the turbulence model
used in the method. The results could of course be analyzed further to exam-
ine other aspects of turbulence modelling. This has not been pursued in view
of the following.
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Perhaps the most interesting aspect of the calculations for the Wigley

hull is the very large and marked influence of using the wall functions in the
turbulence model on the prediction of the wake. The experiments indicate that
the three dimensionality and turbulence generated in the near-wall region of
the stern flow persist for quite large distances in the wake. This is presum-
ably because the pressure gradients in the stern region of this hull are too
weak to significantly affect the development of the near wake. It is clear
that further improvements in the prediction of the wake would require replace-
ment of the wall functions with a turbulence model that would enable accurate
resolution of the near-wall layers.

V.2 SSPA CARGO LINER

(a) Hull Geometry and Available Experimental Information

The experiments of Larsson (1974) were conducted on a double model of a
cargo liner in a 1.25 m x 1.80 m wind tunnel, with a freestream turbulence
level of about 0.2 percent. The model was supported from the tunnel floor by
two struts. The tests were conducted at a Reynolds number of 5 x 106, based
on model length L = 2 m. The hull offsets are shown in Figure 19. The beam
and draft of the model are 0.283 m and 0.118 m, respectively, and the block
coefficient is 0.675. Larsson made extensive potential-flow calculations,
with and without tunnel walls, to study the effect of wind-tunnel blockage on
the hull pressure distribution. These calculations have been used here to
correct the measured pressures for blockage.

As this was an investigation of the hull boundary layer, measurements of
velocity profiles were made in streamline coordinates, i.e., the two velocity
components in planes paraliel to the hull surface, along and normal to the
inviscid-flow streamlines on the hull, were measured along local ncrmals to
the hull., The inviscid streamlines calculated by Larsson, and along which his
measurements were made, are shown in Figure 19(c). The mean-velocity measure-
ments were made by hotwires and covered the range 0.20 < x < 0.95. In a later
investigation, Lofdahl (1982) (see also Lofdahl and Larsson, 1984) measured
all six components of the Reynolds-stress tensor by hotwires along the same
streamlines. However, his measurements were restricted to the region 0.75 < x
< 0.95, where the boundary layer was thick enough for probe size and interfer-
ence effects to be small.
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(b) Numerical Grid

As in the previous case, the solution domain is defined by {0.3 < x <
4.524, rg < r < 1.0}, and covered by 50 x 30 x 15 grid points in the axial,
radial, and circumferential directions, respectively. From Section IV.2, we
recall that this is not the finest gird that was employed to study the grid
dependence of the present method. Some views of the numerically-generated
grid are shown in Figure 20. The grid-control functions £l used to obtain
this grid were given in equation (41). The parameters appearing therein are
as follows:

0.10 if A<D
0.01 ifA>O0

d = 0.2

With this choice, the first grid node just off the hull 1ies in the range 40 <
vt < 250.

{c) Desr.iption of Results and Comparisons with Experiments

We have already mentioned the difficulties of interpolating data obtained
in boundary-layer coordinates to make comparisons with solutions obtained in
numerical coordinates of the type used here. We shall therefore restrict the
comparisons only to those quantities which are either unaffected by the choice
of coordinates or are insensitive to differences in the coordinates. Among
the former are the distributions of pressure and wall shear stress on the
hull. Figure 21 shows the distribution of pressure and friction velocity U,
along the keel and the waterline planes of symmetry. Girthwise distributions
of pressure and the magnitude of the friction coefficient at a few transverse
sections are shown in Figure 22. The direction of the wall shear stress can
be seen from the 1imiting streamlines plotted in Figure 23. The last figure
was obtained by integration of the wall shear stress vectors starting from the
initial section at x = 0.3. The data of Larsson (1974), with and without
blockage correction in the case of pressure, are also shown in Figures 21 and
22.
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Figures 21 and 22 indicate that the effect of wind tunnel blockage is
quite significant in the pressure distributions and that the calculations are
in quite good agreement with the data corrected for blockage. It is seen that
at midships the pressure is essentially uniform around the girth, buv girth-
wise gradients develop as the geom:try changes. These gradients become large
near the keel as the transverse surface curvatiuce increases, and a region of
low pressure develops some distance from the keel. The associated girthwise
pressure gradient is such that there is a divergence of flow out of the keel
and a thinning of the boundary layer along the keel. There is also a second-
ary motion towards the lcw pressure region from abcve. This convergence of
flow from both sides into a region around midgirth leads, as we shall see, to
a thickening of the viscous layer there. The relationship between the pres-
sure distribution and the wall shear stress 1is not immediately obvious from
Figures 21 through 23, but, as will become clear later, the low values of the
wall shear stress occur where the viscous layer becomes thick. Figure 23
shows the divergence of wall streamlines out of the keel over much of the
hull, but a rather complex pattern develops over the stern. The strong con-
vergence of streamlines in an area just above the keel at the stern is fre-
quently interpreted as evidence of a longitudinal vortex and even separ-
ation. However, as will become ciear as we examine the details of the flow
for other hulls, this pattern by itself is not an indication for either a
vortex or flow separation.

The flow pattern on the waterplane and in the vertical centerplane,
constructed by finterpolation of the numerical results, is shown in Figure
24. The thickening of the boundary layer over the stern in the waterplane,
and the thinning of the boundary layer along the keel are clearly seen from
these views as 1is the evolution of the three-dimensional wake. Contours of
the axial velocity (U) and velocity vectors projected into transverse sections
(V and W components) are shewn in Figure 25 for some representative sections
in the range 0.5 < x < 1.1. The transverse velocity plots also give an indi-
cation of the grid distribution. At midships, the secondary flow is directed
away from the keel as well as from the waterplane. This leads to the thicken-
ing of the layer around midgirth which is already evident by x = 0.7. Tnis
process continues as the secondary motion becomes stronger, particularly near
the keel where the hull geometry changes more rapidly. We now see that the
regions of Tow wall shear stress in Figure 22 coincide with the regions of
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thickening of the viscous layer. By x = 0.95, the thickness of the viscous
layer is almost as large as the draft of the model. At and downstream of the
stern, the secondary motion gives the impression of a longitudinal vortex, but
the strength of this motion diminishes quite rapidly.

The contours of the axial component of velocity shown in Figure 25 may be
compared with those of the magnitude of mean velocity, reconstructed by
Broberg and Larsson (1984) from the measurements of Larsson (1974) and Lofdah}
(1982), which are shown in Figure 26. We note again not only the difference
in the quantities but also the fact that the experimental contours are not
based on measurements in transverse sections. The error involved is small,
however, and there is good agreement between the calculations and measurements
with regard to the major features of the stern flow.

More detailed comparisons between experiments and calculations are

.attempted in Figure 27. The calculated results were interpolated to determine

the variation, with distance N normal to the transverse section of the hull,
of the resultant velocity parallel to the hull (Q), its component (C) normal
to the direction of the calculated streamline at the location of the measured
boundary-layer edge, and the turbulent kinetic energy (k), at each of the
points on the hull for which experimental data are available. A1l of these
quantities ace relatively insensitive to the remaining differences between the
computational and experimental Tlocations. Also, we note that C is the so-
called crossflow velocity in the terminology of boundary-layer theory.

Figure 27a shows the profiles of Q and C. Figure 27b shows semilogarith-
mic plots of Q versus Nx = UON/V, the format of the Clauser plots which were
used for the experimental determination of the wall shear stress from the
measured velocity profiles. Figure 27c shows the distributions of the turbu-
lent kinetic energy. Comparisons are presented for five transverse sections,
namely, x = 0.50, 0.75, 0.85, 0.90, and 0.95, the last four of which coincide
with those where the turbulence measurements of Lofdahl were made. For con-
venience, the girthwise locations of the measurement stations, the normals to
the transverse section at those stations, and the hull section just downstream
of the measurement section (from Figure 19) are shown in each figure. The
line numbers correspond to the potential-flow streamlines calculated by
Larsson, lines 1 and 10 being the keel and waterline, respectively. The data
are shown by symbols at all stations where measurements were made.

69

N I

D P SV U B T .
T

R A Y

R T
b e
B




Considering the midship section first, we see that the thickness of the
boundary layer and the longitudinal velocity profiles are predicted quite
well. The crossflow, which is small, is captured only qualitatively. The
Clauser plots indicate that the calculations reproduce the logarithmic layer
indicating that the placement of the near-wall nodes in the numerical grid is
satisfactory for the wall functions approach to be applicable., It is also
seen that further grid refinement can be made by pulling the near-wall nodes
closer to the wall, but as we have already shown in Section IV.2, adding
points in the grid does not by itself provide greater accuracy. More impor-
tantly, the agreement between the calculations and data in the inner region is
indicative of the accuracy with which the large gradients in the wall layer
are resolved in the numerical solutions. The agreement in the Clauser plots
is, of course, reflected in the agreement shown earlier with respect to the
wall shear stress. Finally, there 1is nothing remarkable about the turbuilent
kinetic energy profiles at midships; they resemble those in a flat-plate
boundary layer.

The section x = 0.75 may be the most downstream section at which the flow
could still be regarded as of the boundary-layer type. Here, the velocity
magnitude and the crossflow component are predicted with reasonable accuracy
everywhere except at line 6, where it is the data which appear to be spur-
jous. The profiles of turbulent kinetic energy at this section begin to show
a trend which becomes very pronounced further downstream. We observe that the
calculated values are generally larger than the measurements and, at Tine 5,
which is roughly where the thickness of the viscous layer is the greatest, the
k distribution develops a plateau.

The final three sections considered in Figure 27 (x = 0.85, 0.90, 0.95)
Tie in the stern-flow region where the viscous layer can no longer be regarded
as a boundary layer. From the results at these sections we make the following
observations. First, the variation of the thickness of the viscous layer,
around the girth and in the axial direction, are predicted with considerable
accuracy. Secondly, the mean velocity profiles are described quite well by
the calculations although, as evidenced by the logarithmic plots, there is a
tendency for the calculated velocities to be somewhat larger in the near wall
region. Thirdly, the general shapes of the crossflow profiles are predicted
but there exist differences in magnitude. The differences may, however, be of
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the same order as the uncertainties of interpoiation. Fourthly, the predicted
turbulent kinetic energy is considerably larger than that measured. Finally,
we note a very characteristic two-layer feature developing around midgirth
(see line 5 at x = 0.85; and lines 3,5,7 at x = 0.90 and 0.95) which suggests
the existence of a thin layer of fluid close to the wall in which k diminishes
rapidly, and a much larger layer farther out where there is a plateau in k and
a gradual decrease to zero outside the viscous region. Although there is a
hint of such a two-layer structure in the calculated profiles, it is obvious
that the present turbulence model fails to capture the changes that are taking
place in the turbulence in the flow over the stern.

{(d) Summary

The calculations for the SSPA liner confirm the capability of the present
numerical method to predict the essential features of the pressure and mean-
velocity fields in considerable detail. This is particularly surprising in
view of the differences between the calculated and measured turbulent kinetic-
energy distributions, and leads to the conclusion that the turbulence in the
outer part of the viscous layer is inactive and is simply being convected with
the mean flow. The success of the calculations must therefore come from the
use of the wall functions which essentially reproduce the observed logarithmic
layer close to the surface. This also suggests that further improvements are
most 1likely to result from refinement of the treatment of the flow in the
near-wall region. Since the experiments on this hull did not extend into the
wake, it is not possible to comment on the quality of the wake calculations.

Finally, we note that these calculations have also pointed out the impor-
tance of wind-tunnel blockage, particularly with regard to the hull pressure
distribution. The effects of blockage on the velocity distributions are too
small to be seen on the various plots. Because the present method can also
take into account wind-tunnel walls by appropriate relocation of the external
boundary of the solution domain, it would be of interest to carry out such a
calculation to study the blockage effect in greater detail.
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V.3 HSVA TANKER

(a) Hull Geometry and Available Experimental Information

The offsets of the HSVA Tanker are shown in Figure 28. The boundary
layer measurements by Hoffman (1976), and the detailed stern-flow measurements
of Wieghardt and Kux (1980) and Wieghardt (1982, 1983), were made on a double
model of this hull in a 1.2 m square, slotted-wall wind tunnel, in which the
turbulence level was of the order of 1 percent. The slotted walls are usually
meant to reduce or eliminate blockage effects. The model was supported in the
tunnel by means of wires and a sting at the stern. The nominal length of the
model was 2.74 m but for reference length we have used the length between
perpendicuars, L = 2.634 m. The odel beam and draft are 0.43 m and 0.15 m,
respectively, and the block coefficient is 0.85.

The Tocations of the measurement sections in the experiments of Wieghardt
and Kux are shown in Figure 29. The data were obtained at nine axial sections
in the range -157 mm < X < 200 mm, in the notation of Figure 29. This corre-
sponds to 0.9103 < x < 1.044 in the present notation. The measurements were
made by means of a five-hole pitot probe, and included the three components of
mean velocity (U,V,W) in Cartesian coordinates and pressure. The closely
spaced measurements enabled the destermination of the mean vorticity field.
The calculations were performed for a Reynolds number of 5 x 106

sponds to the experimental value.

which corre-

(b) Numerical Grid

As in the two previous cases, the chosen solution domain i, defined by

0.3 < x<4.524, ro <r < 1.0 and was covered by 50 x 30 x 15 grid points in

the axial, radial, and circumferential airecticns, respectively. Some views

of the numerica]]y—generated grid are shown in Figure 30. The grid-control

functions f' used to obtain this grid were given in equation (41). The param-
eters appearing therein are as follows:

0.20 ifAKO
0.02 ifA>O0
d= 0.25

72




. RS DV . S

Mg adEh o R R R - - - - e

With this choice, the first grid node just off the hull lies in the range 50 <
+
y < 250.

(c) Description of Resultc and Comparisons with Experiments

Figure 31 shows the distribution of pressure and friction velocity along
the keel and the waterline planes of symmetry, and the girthwise distributions
of pressure and the magnitude of the friction coefficient are shown in Figure
32 at a few transverse sections. In these figures we have included the data
from the boundary-layer experiments of Hoffman (1976) at a Reynolds number of
4.8 x 106. The section x = 0.9418 corresponds to the most downstream measure-
ment section in his experiments and to the X = -73 mm section in the later
experiments of Wieghardit and Kux. From Figure 31 we see that the pressure
distribution is in good agreement with the data except along the keel at the
stern. The lower predicted values of friction velocity along the keel are
consistent with the differences in the pressure distributions. These difrer-
ences are again evident from the girthwise variations at x = 0.9417 shown in
Figure 32. These suggest that the stern flow in the neighborhood of the keel
is not being described with sufficient accuracy This may be due, at least in
part, to differences between the actual hull geometry and that implied in the
calculations by the chosen numerical grid.

The direction of the wall shear stress can be seen from the limiting
streamlines plotted in Figure 33. This shows a region around midgirth at the
stern inte which the wall streamlines converge. This is the area of maximum
thickness of the viscous layer. These features, like those of the results
presented in the previous two figures, are qualitatively similar to those
discussed earliier for the SSPA liner.

The rather complex stern geometry of the tanker and some general features
of the resulting flow pattern are seen frem Figure 34. Comparison with the
corresponding figure (Figure 24) for the more siender SSPA hull shows that the
flow pattern is qualitatively similar. However, these views of the flow tend
to mask the very significant differences that exist.

Figure 35 presents comparisons between the experimental data and calcula-
tions with respect to the mean-velocity field. The contours of axial velocity
and projections of the velocity vectors in transverse sectiors are shown at
six sections. Particularly noteworthy here is the very fine grid used for the
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measurements. Here, the measurements and calculations correspond to trans-
verse sections and therefore the comparisons do not involve the uncertainties
which were present in the case of the SSPA liner.

At the most upstream section, x = 0.6433, we see that the boundary layer
is thin except around the turn of the bilge. Although the local crossflow is
quite weak, the thicker boundary layer is the result of flow convergence
towards the turn over some distance upstream. By the next section, x =
0.9103, the boundary layer has thickened considerably near midgirth. The
following section, x = 0.9418, corresponds to the last measurement section in
the experiments of Hoffman and the data shown in Figure 1b. Comparison of the
calculations with the recent and more detailed data indicates that the general
features of the U contours and the transverse velocity components are pre-
dictea at all sections but there are differences particularly close to the
hull around z = -0.04. The gaps in the data at these depths at x = 0.9549 and
0.9692 are regions of Tow velocity which could not be resoived by the pitot
probe. At the three downstream sections, some of the velocity contours are
missing partly because the predicted velocities are larger and partly due to
the use of the wall functions. The wall functions cculd of cour:ze be used to
reconstruct the contours close the hull and wake centerplane but this has not
been done here. Comparisons of specific contours, for example U = 0.5 and 0.9
at the last three sections reveal that the predictions are in remarkably good
agreement with the measurements. The solutions also capture the major fea-
tures of the secondary motion, dncluding the magnitudes, but this is not
immediately obvious from Figure 35.

In order to make a detailed assessment of the predictions, the results of
the calculations were interpolated to obtain the distributions of the three
velocity components (U,V,W) and pressure (p) in the Cartesian coordinates
which were employed for the measurements. This makes it possible to plot the
profiles of these parameters in, say, the horizontal direction (y) at differ-
ent depths {z = constant). The results are shown in Figure 36. Although
there is a great deal of similarity in the results because of the closely
spaced stations, we have included all ten transverse sections here to facil-
itate future reference and compar sons by others using different methods. In
general, we See that the calculations are in rather remarkable agreement with
the data in all respects except in small regions close to the hull or in the
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neighborhood of the wake centerplane just downstream of the ship. Before
discussing these features it 1is useful to point out that y in these profiles
is measured from the ship centerplane and therefore one gets a rough idea of
the hull shape at earh section. Also, z = 0 is the waterplane and the keel is
at z = -0.051.

Reference to Figure 2?9 shows that the first five sections are located in
the region where the keel is still horizontal (x = 0.9621 corresponding to
section X = -19 mm), the next section is just where the stern is almost per-
pendicular (x = 0.9692 corresponds to X = 0), and the remaining four sections
are located downstream of the propeller plane. It is important to keep in
mind the Tlocal gecmetry, and particularly the changes in it, in order to
understand the results shown in Figure 36. It is convenient to discuss these
in three stages, roughly corresponding to the three regions identified above.

In the first region, upto x = 0.9621 (Figure 36a-e), we see that the U
and V components are in good agreement with the data but the vertical compon-
ent W shows a characteristic difference that persists downstream. The magni-
tude of the W component changes rather rapidly with distance from the hull
surface in the region where the surface is nearly vertical, i.e., where W is
nearly parallel to the surface. At the tvo downstream sections, we also
observe ircreasing differences in the horizontal V component. The prediction
of the pressure field is quite satisfactory, except in small layers close to
the hull which roughly coincide with the regions in which we see differences
in the W velocity component. There are two possible explanations for the
differences between the calculations and measurements. One is that the wall-
functions approach employed here coc- not completely capture the details of
the secondary motion. The second a.: ~h more likely possiblity is that the
numerical grid does not resclve the locat ceometry in sufficiently fine detail
to predict the secondary motions and the as.ociated pressure field.

The plots for x = 0.9692 (Figure 36f) rev. 1 that the differences between
the calculations and measurements now extend to the U and V components, and
the characteristic features of the W compcnenc noted above continue. A care-
ful examination of these differences indicates that they stem principally from
the truncation of the local geometry implied by the numerical grid employed,
and from the way in which the hull and wake boundary conditions are enforced
in the local numerical cells at this section within the framewo~k of the
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staggered grid used in the present velocity-pressure coupling method. How-
ever, previous experience with problems involving discontinuities of boundary
conditions, from no slip on the hull to zero stress on the wake centerplane,
suggests that improved results can be obtained by more refined grids and a
more direct treatment of the flow in the near-wall layer than made in the
wall-functions approach.

The results at the final four sections (x > 0.9786, Figure 36g-j) indi-
cate the development of the near wake. Here, the differences which were
generated upstream continue. Also, we see that the calculations predict a
rather rapid increase in axial velocity in the wake centerplane, a feature
which was also observed in the case of the Wigley hull (see Figure 18f-1),
This is most likely due to the use of the wall-functions which do not resolve
the flow in the near-wall layer on the hull upstream. [t is interesting to
note the decay of the calculated as well as the measured secondary motion with
downstream distance. At the last section the calculated U and V components
are again in reasonably gocd agreement with data while the differences in Y
and p persist.

As we have already noted, the measurements of Wieghardt and Kux were made
in such detail that it was possible to carry out the differentiations required
to determine the mean vorticity field. In spite of the uncertainties involved
in processing both the measured and computed data, a comparison between the
computed and measured vorticity is a particularly acid test of a computational
method because it 1is an examination of differences in velocity gradients
rather than just velocity components. Such a comparison 1is presented in
Figures 37 and 38. Figure 37 shows the contours of the longitudinal component
of vor .icity, [9W/3y - 3V/3z], while Figure 38 shows the contours of the
magnitude of the vorticity vector, (mX2+ o 2+ w22)1/2. These plots show that
the calculations reproduce not only the general features of the contours but
also the magnitudes. The differences close to the hull and around the wake
centerplane are to be expected from the differences 1in the velocity
distributions discussed above. An additional ind new feature that becomes
apparent from the vorticity comparisons, however, is that the calculations
indicate a somewhat larger diffusivity compared with the measurements. This
is presunably due to an overestimation of the eddy viscosity by the
standard k-e turbulence model. We have already commented on this feature in
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connection with the prediction of the turbulent kinetic energy in the previous
cases.

(d) Discussion

The HSVA tanker represents a more severe test of the calculation method
than the previous two hulls because of its high block coefficient and rather
abrupt changes in stern geometry. In addition to the observations that have
been made on the basis of the previous calculations, the comparisons between
the numerical results and the very extensive experimental data for the present
case suggest the need for (a) more refined treatment of the stern geometry,
(b) better resolution of the flow in the near-wall layer, and (c) some correc-
tion for the higher rates of diffusion of mean vorticity predicted by the

calculations.
V.4 SR107 ORE CARRIER

(a) Hull Geometry and Experimental Information

The offsets of this hull are shown in Figure 39. Experiments on a double
model of this form were conducted in the 1.8 m x 1.8 m wind tunnel of Osaka
University (Okajima et al., 1985 and Nishio et al., 1988). The 2 m long model
was supported in the tunnel by means of wires along the keel. The model beam
and draft are 0.2927 m and 0.1126 m, respectively, and the block coefficient
is 0.826. The data were obtained at five axial sections in the range 0.8 < x
< 1.0 in the present notation. The measurements were by means of a five-hole
pitot probe, and included the three components of mean velocity (U,V,W) in
Cartesian coordinates and pressure. The closely spaced measurements enabled
the determination of the mean vorticity field. The calculations were per-
formed for a Reynolds number of 2.4x106 which corresponds to the experimental

value.
3 (b) Numerical Grid
f: The numerical solution domain chosen for this case is the same as in the
3 previous cases and is defined by 0.3 < x < 4.524, r¢ <r < 1.0 . This was
é, again covered by 50 x 30 x 15 grid points in the axial, radial, and circumfer-
¥ ential directions, respectively. Some views of the numerically-generated grid
%ﬁ 77
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are shown in Figure 40. The grid-control functions f! used to obtain this
grid were given in equation (41)., The parameters appearing therein are as
follows:

0.10 ifA<O
0.01 ifA>0

o
1l

0.2

With this choice, the first grid node just off the hull lies in the range 60 <
+
y < 250.

(c) Description of Results and Comparisons with Experiments

Comparison of Figure 39 with Figure 28 shows the difference in the bow
and stern shapes of the SR107 and the HSVA hulls although both are relatively
full forms. The measurements in the two experiments were made in a very
similar manner and therefore it is convenient to present the results for the
present case in essentially the same format. Thus, Figures 41 and 42 show the
hull pressure and friction distributions, Figure 43 shows the calculated wall
streamlines, Figure 44 shows the flow pattern in the waterplane and in the
vertical centerplane, and Figures 45 through 48 give details of the velocity
and vorticity fields. In general, these results are qualitatively similar to
the corresponding results for the HSVA hull. However, the level of agreement
between the measured and computed pressure distributions shown in Figures 41
and 42 is particularly noteworthy.

An overview of the velocity “ield is given by Figure 45 which shows the
contours of the axial velocity component and projections of the velocity
vectors in five transverse sections. These may be compared with Figure 35.
The wake of the support wires at the keel is seen from the results at x = 0.8,
and tnis is responsible for the somewhat thicker boundary layer measured along
the keel further downstream. The reason for the abrupt thickening of the
boundary layer around the turn of the bilge shown by the data at x = 0.8 is
not clear but its effect is observed at almost a1 stations downstream. The
difference between the calculations and experiuwents in this regard is most
likely due to the inadequacy of the simple initial conditions used in the
calculations at x = 0.3. Presumably, the bulbous bow of this model induces a
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level of three dimensionaTity that is not captureéd by the initial condi-
tions. The initial conditions ceuld of course- have ‘Been adjusted: to -6btain a
better fit to the measSurements at the first -measuremént section but this has
not been attempted here.

The results of Figure 45 show yet another feature that was absent in the
previous cases. The SR107 model included a propeller boss and a rudder post,
which are visible in the plots for x = 0.975. These details, however, were
not considered in the present calculations and the stern sections were simply
faired as shown. It 1is clear from the comparisons between the calculations
and measurements, particularly at sections x = 0.95, 0.975, and 1.00, that
there is a considerable Tlocal effect of these features on the velocity
field. The differences are of course more proneunced in the transverse com-

ponents.,

The aforementioned differences should be kept in mind in assessing the
detailed comparisons of the velocity components and pressure presented in
Figure 46. The format is the same as that used in the case of the HSVA tanker
(see Figure 36). It is quite remarkable that the predicted values of all
three velocity components are in good agreement with the data everywhere at
the first section, x = 0.8, except around z = -0.045, a region that corre-
sponds to the thick boundary layer mentioned earlier. The pressures measured
at this section show a rather curious behavior although the calculations and
data are in good agreement very close to the hull. In fact, the measured
trends are rather difficult to understand. The persistence of this feature at
other stations downstream would suggest a consistent error in the data.

The distributions of the velocity components at x = 0.9 are very similar
to those at x = 0.8. Some differences begin to appear at x = 0.95. These are
consistent with the effects of the propeller boss and rudder post mentioned
above. A particularly noteworthy feature of the results at x = 0.95 and 1.00,
however, is their marked resemblanc2 with those obtained around the stern of
the HSVA tanker. Comparison of the SR107 resu]tsiat x = 1,00 with those for
the HSVA tanker at x = 0.988 (Figure 36), for example, reveals very similar
distributions of all velocity components. This leads us to reiterate the
previous observations concerning the need for a better resolution of the local
geometry and flow,
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Contours of the Tongitudinal component of vorticity, o = (3W3y-8V/82)é
are shown in Figure 47, and Figure 48 shows contours of {(3y/3z)
+ (QU/ay)z}]/z, which is approximately (wA2+ wzz)]/z, the resultant of the
y-and z-components of vorticity. It is clear that the caléulations are in
remarkable general agreement with the experimental results. Some of the
details are not completely captured by the solutions for reasons which we have
already discussed. It is, however, interesting to note that the overall
vorticity field is not markedly affected by the presence of the propeller boss
and the rudder post. This is evidently due to the fact that while they
produce significant distortion of the velocity and pressure fields, they do
not generate large amounts of vorticity that can be seen outside their

immediate wakes.

(d) Discussion

The solutions for the SR107 hull and comparisons with the corresponding
experiments have brought forth three issues which were not evident from the
previous test cases. First, we observe that a huil with a bulbous bow may
require a more careful treatment of the initial conditions than has been
employed in the present calculations. However, the differences observed in
this respect may have been exaggerated in the present case by the rather low
Reynolds number of the experiments and perhaps an ineffective transition
device. Secondly, the local distortions of the velocity and pressure field
introduced by such practical geometrical features as a propeller boss and a
rudder post need to be taken into account in comparisons between experiments
and calculations. Incorporation of such geometrical features would require
further development of certain aspects of the computational method. Thirdly,
the very marked similarity of the results for the SR107 and HSVA hulls points
to the need for refinement of the treatment of the near-wal! region in stern
flows.

V.5 SERIES 60, G, = 0.60

(a) Hull Geometry and Experimental Informatioﬁ

The geometry of this hull is well known and is shown in Figure 49. The
model used in the experiments was fitted with a propeller boss {stern tube) as
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shown in Figure 50 but, as in the previous ¢aseé, the calculations correspond
to the bare hull shéwn in Figuré 49. Also, as noted earlier, these
éxperinients différ from the others in that they were conducteéd in a towing
tank. A detailed deséription of the experiments is given by Toda et al.,
(1988).  For the purposes of thé présent work, it suffices to note the
following. The measurements were made on 4 m Tong models at a Froude number
Fn = 0,16 and a Reynolds number Ré = 3.2 x 100. Two different models were
employed, orie for the hull pressure distributions and thé othér for the flow-
fié1d measurements. The calculations have been made with a flat free surface
(Fn = 0) and plane-of-symmetry boundary conditions on it. The available data
include the hull pressure distribution measured by surface pressure taps, and
profiles of the velocity components (U,V,W) and pressure p measured by a five-
hole pitot probe. The latter data were obtained at numerous transverse
sections in the range 0.50 < x < 1.10. The use of Cartesian coordinates, as
in the experiments on the HSVA and the SR107 hulls, greatly facilitates
detailed comparisons between calculations and experiments.

(b) Numerical Grid

The numerical solution domain chosen for this case is the same as in the
previous cases and is defined by 0.3 < x < 4.524, r¢ <r <1.0. This was
again covered by 50 x 30 x 15 grid points in the axial, radial, and circumfer-
ential directions, respectively. Some views of the numerically-generated grid
are shown in Figure 51. The grid-control functions f1 used to obtain this
grid were given in equation (41). The parameters appearing therein are as
follows:

0.10 ifAKO
C =

0.01 ifA>O0
d = 0.2

With this choice, the first grid node just off the hull 1ies in the range 50 <
4
y* < 250.
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(c) Description of Results and Comparisons with Experiments

The variation of pressure and friction velocity along the keel and the
waterline are shown in Figure 52. No data is shown for the friction velocity
because the velocity profiles have not yet bu:en analyzed through Clauser
plots. On the other hand, two sets of data are shown for the pressure. These
were obtained during the pitot measurements on the port and starboard sides.
The data on the waterline are those measured just below the free surface. The
close agreement of the calculations with the measured pressure distribution
along the waterline indicates that the effect of the free surface at the low
Froude number of these tests is negligible.

The girthwise distributions of pressure, measured by means of surface
pressure taps, at four typical transverse sections are shown in Figure 53.
Also shown there, for future reference, are the distributions of the friction
coefficient C¢.  The major features of the hull pressure distribution are
predicted quite well except that there appears to be a nearly constant differ-
ence between the calculatiuns and data at the first three sections, and a
disagreement in a region above the keel at x = 0.975. The former could be due
to a difference between the reference pressure used in the experiments and the
true freestream pressure. The latter, on the other hand, is associated with
the presence of the propeller boss in the experiments.

Comparison of the results for the Series 60 with those obtained for the
SSPA liner indicates that the general features of the pressure and friction
distributions on these hulls are quite similar. This is also the case for the
wall streamlines shown in Figure 54, and the flow patterns in the waterplane
and the vertical centerplane shown in Figure 55.

The contours of constant axial velocity and the transverse components of
velocity are shown in Figure 56. It is clear from the plots of the data that
the measurements could not be made very close to the free surface which was
relatively flat over the stern region and coincided with the load waterline, z
= 0. Excellent agreement is observed between the calculated and measured ax-
ial velocity contours upto about x = 0.95. A close examination of the trans-
verse velocity field indicates that some differences begin to appear above and
below z = -0.032 which is where the centerline of the propeller boss is locat-
ed. This is undoubtedly an upstream influence of the boss. The results for x
= 0.975 and downstream of there clearly show the boss and its effect. It is
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seen that this influence i$ rather localized, as was the case for the SR107
model, and the agreement between the predictions and experiments continues to
be quite good elsewhere.

Finally, detailed distributions of the velocity components (U,V,W) and
pressure p, are shown in Figure 57 in a format that should be quite familiar
by now. In view of the discussion that has already been made of the results
for the HSVA tanker (Figure 36) and the SR107 Ore Carrier (Figure 46), we
shall point out only the two major distinguishing features of these results.
First of all, we see a high level of agreement between the calculations and
experimental data in almost all respects upto x = 0.9. There are occasional
differences which appear to be due to scatter in the data rather than to scme
flow feature that is not being resolved by the calculations. Secondly, the
regions of disagreements at the downstream stations clearly define the influ-
ence of the local change in the stern geometry made by the propeller boss.
The fact that this influence is localized in the transverse sections is seen
from the coatinued agreement between the experimental data and the bare-hull
calculations.

{(d) Discussion

These calculations have revealed the similarities in the stern flow of
the Series 60 and the SSPA 1liner. They have also indicated that in the
absence of a wave system the effect of the free surface on the viscous flow
appears to be quite weak. The detailed " mparisons in the velocity profiles
clearly delineate the effects of local hull modifications such as that of a
propeller boss. These comparisons are presented here in detail because they
will be useful in the assessment of future calculations that include such

complexities.

VI. SUMMARY AND CONCLUSIONS

A fully-elliptic numerical method for the solution of the complete
Reynold-averaged Navier Stokes equations for general three-dimensional flows
has been presented. The method uses numerically-generated nonorthogonal
coordinates while retaining the velocity components in a convenient orthogonal
system. For turbulent flows, closure of the equations is effected by the well
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known k-e turbulence model with the generally accept~ad values of ‘the constants
in the model and a two-point wali-function approach. The various numerical
‘features- of the method have been described and evaluated in detail.

The- numerical method described here s built into a computer code
RANSTERN which consists of three programs. The first of these maps the
physical hull surface into- the rectangular plane-n = 1 in the transformed
domain (see Figures 2 and 3). Spline functions are used for interpolation of
thé numerical grid on the hull surface. The surface grid thus obtained is
used to provide the boundary conditions for the szcond program which generates
the body-fitted coordinate system for the whole computational domain as
described in Section III.2.(a). the flow equations are solved in the third
program using the methods described 1in Section [I1.2.(b). For the
calculations presented in this report, the output from the second program is
used directly as finput to the third. However, the third program can also
accept grids generated by other methods provided the grid-control functions
are evaluated in a compatible way.

Calculations have been performed for the flow over the stern and in the
wake of five ship hulls for which experimental data are available. Extensive
comparisons have been made with the data to understand the important features
of such flows and to gage the success with which these can be predicted by the
calculation method. The results are presented in detail so that they can be
used in the future to assess other methods and further improvements.

The following general conclusions can be drawn from this study.

(1) The present numerical method has many attractive features. Among
these are rapid and monotonic convergence to steady-state solutions starting
from very simple initial guesses, ability to perform accurate calculations
ovér large solution domains with a relatively modest grid, and thé potential
capability to calculate unsteady flows.

(2) The method provides an excellent description of the overall features
of the flow, including the pressure and friction distributions on the hull,
and the mean velocity field in and outside the viscous layer at the stern.
Therefore, it can be used in practical applications to calculate viscous
resistance, determine the flow ahead of propellers and appendages, and study

the problem of scaling the results of model tests to full-scale Reynolds num-
bers.
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(3) calculations for a typical hull také about 5 to 10 minutes on a
supercomputér, It is also possible to make similar calculations on a modern
minicomputer iR a matter of hours.

(4) The basic features of the numerical method are such 'that, with minor
modifications, it can be utilized for the solution of many other typés of
problemS. With regard to the numerical content of the method, improvements
can be made in several areas, the principal one being grid generation and
control..

(5) Improvements in the description of the flow in the very near wake
would require a more detailed resolution of the local surface geometry and a
better description of the flow in the near-wall layers. The second topic
involves further developments in turbulence models for near-wali flows.
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(c) Profiles of turbulent kinetic energy (k) : X = 0.5
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(c) Profiles of turbulent kinetic energy (k) : X = 0.9
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